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Prediction Problems

Given x, predict y
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Prediction Problems

Given x,              predict y
A book review

Oh, man I love this book!
This book is so boring...

Is it positive?
yes
no

Binary
Prediction
(2 choices)

A tweet
On the way to the park!

公園に行くなう！

Its language
English

Japanese

Multi-class
Prediction
(several choices)

A sentence

I read a book

Its parts-of-speech Structured
Prediction
(millions of choices)I   read   a   book

DET NNVBDN

Sequential prediction is a subset
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Simple Prediction:
The Perceptron Model
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Example we will use:

● Given an introductory sentence from Wikipedia

● Predict whether the article is about a person

● This is binary classification (of course!)

Given

Gonso was a Sanron sect priest (754-827)
in the late Nara and early Heian periods.

Predict

Yes!

Shichikuzan Chigogataki Fudomyoo is
a historical site located at Magura, Maizuru
City, Kyoto Prefecture.

No!
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How do We Predict?

Gonso was a Sanron sect priest ( 754 – 827 )
in the late Nara and early Heian periods .

Shichikuzan Chigogataki Fudomyoo is
a historical site located at Magura , Maizuru
City , Kyoto Prefecture .
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How do We Predict?

Gonso was a Sanron sect priest ( 754 – 827 )
in the late Nara and early Heian periods .

Shichikuzan Chigogataki Fudomyoo is
a historical site located at Magura , Maizuru
City , Kyoto Prefecture .

Contains “priest” →
probably person!

Contains
“site” →
probably not person!

Contains “(<#>-<#>)” →
probably person!

Contains
“Kyoto Prefecture” →
probably not person!
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Combining Pieces of Information

● Each element that helps us predict is a feature

● Each feature has a weight, positive if it indicates “yes”, 
and negative if it indicates “no”

 
● For a new example, sum the weights

● If the sum is at least 0: “yes”, otherwise: “no”

contains “priest” contains “(<#>-<#>)”
contains “site” contains “Kyoto Prefecture”

w
contains “priest”

 = 2 w
contains “(<#>-<#>)”

 = 1
w

contains “site”
 = -3 w

contains “Kyoto Prefecture”
 = -1

Kuya (903-972) was a priest
born in Kyoto Prefecture. 2 + -1 + 1 = 2
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Let me Say that in Math!

y = sign (w⋅ϕ(x))

= sign (∑i=1

I
w i⋅ϕi( x))

● x: the input

● φ(x): vector of feature functions {φ
1
(x), φ

2
(x), …, φ

I
(x)}

● w: the weight vector {w
1
, w

2
, …, w

I
}

● y: the prediction, +1 if “yes”, -1 if “no”
● (sign(v) is +1 if v >= 0, -1 otherwise)
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Example Feature Functions:
Unigram Features

● Equal to “number of times a particular word appears”

x = A site , located in Maizuru , Kyoto
φ

unigram “A”
(x) = 1 φ

unigram “site”
(x) = 1 φ

unigram “,”
(x) = 2

φ
unigram “located”

(x) = 1 φ
unigram “in”

(x) = 1

φ
unigram “Maizuru”

(x) = 1 φ
unigram “Kyoto”

(x) = 1

φ
unigram “the”

(x) = 0 φ
unigram “temple”

(x) = 0

…
The rest
are all 0

● For convenience, we use feature names (φ
unigram “A”

) 

instead of feature indexes (φ
1
)
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Calculating the Weighted Sum
x = A site , located in Maizuru , Kyoto

φ
unigram “A”

(x) = 1
φ

unigram “site”
(x) = 1

φ
unigram “,”

(x) = 2

φ
unigram “located”

(x) = 1

φ
unigram “in”

(x) = 1

φ
unigram “Maizuru”

(x) = 1

φ
unigram “Kyoto”

(x) = 1

w
unigram “a”

 = 0

w
unigram “site”

 = -3

w
unigram “located”

 = 0

w
unigram “Maizuru”

 = 0

w
unigram “,”

 = 0
w

unigram “in”
 = 0

w
unigram “Kyoto”

 = 0

φ
unigram “priest”

(x) = 0 w
unigram “priest”

 = 2

φ
unigram “black”

(x) = 0 w
unigram “black”

 = 0

* =

0

-3

…

0

0
0
0

0

0

0

…

+

+
+

+

+
+
+

+
+

=
-3 → No!
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Learning Weights
Using the Perceptron Algorithm
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Learning Weights

y x
1 FUJIWARA no Chikamori ( year of birth and death unknown ) was a 

samurai and poet who lived at the end of the Heian period .

1 Ryonen ( 1646 - October 29 , 1711 ) was a Buddhist nun of the Obaku 
Sect who lived from the early Edo period to the mid-Edo period .

-1 A moat settlement is a village surrounded by a moat .

-1 Fushimi Momoyama Athletic Park is located in Momoyama-cho , Kyoto 
City , Kyoto Prefecture .

● Manually creating weights is hard
● Many many possible useful features
● Changing weights changes results in unexpected ways

● Instead, we can learn from labeled data



  14

Sequential Data Modeling – The Structured Perceptron

Online Learning
create map w
for I iterations

for each labeled pair x, y in the data
phi = create_features(x)
y' = predict_one(w, phi)
if y' != y

update_weights(w, phi, y)

● In other words
● Try to classify each training example
● Every time we make a mistake, update the weights

● Many different online learning algorithms
● The most simple is the perceptron



  15

Sequential Data Modeling – The Structured Perceptron

Perceptron Weight Update

● In other words:
● If y=1, increase the weights for features in φ(x)

– Features for positive examples get a higher weight
● If y=-1, decrease the weights for features in φ(x)

– Features for negative examples get a lower weight

→ Every time we update, our predictions get better!

w ←w+ y ϕ(x)
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Example: Initial Update
● Initialize w=0

x = A site , located in Maizuru , Kyoto y = -1

w⋅ϕ(x)=0 y '=sign(w⋅ϕ( x))=1

y '≠ y

w ←w+ y ϕ(x)

w
unigram “A”

= -1
w

unigram “site”
= -1w

unigram “,”
 = -2

w
unigram “located”

= -1w
unigram “in”

 = -1

w
unigram “Maizuru”

 = -1

w
unigram “Kyoto”

 = -1
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Example: Second Update
x = Shoken , monk born in Kyoto y = 1

w⋅ϕ(x)=−4 y '=sign(w⋅ϕ( x))=−1

y '≠ y

w ←w+ y ϕ(x)

w
unigram “A”

= -1
w

unigram “site”
= -1w

unigram “,”
 = -1

w
unigram “located”

= -1w
unigram “in”

 = 0

w
unigram “Maizuru”

 = -1

w
unigram “Kyoto”

 = 0

-2 -1 -1

w
unigram “Shoken”

= 1
w

unigram “monk”
= 1

w
unigram “born”

= 1
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Review:
The HMM Model
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Part of Speech (POS) Tagging

● Given a sentence X, predict its part of speech 
sequence Y

● A type of “structured” prediction, from two weeks ago

● How can we do this? Any ideas?

Natural language processing ( NLP ) is a field of computer science

JJ            NN            NN  -LRB- NN -RRB- VBZ DT NN IN  NN          NN
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Probabilistic Model for Tagging

● “Find the most probable tag sequence, given the 
sentence”

● Any ideas?

Natural language processing ( NLP ) is a field of computer science

JJ            NN            NN   LRB   NN  RRB VBZ DT NN  IN  NN         NN

argmax
Y

P (Y∣X )
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Generative Sequence Model

● First decompose probability using Bayes' law

● Also sometimes called the “noisy-channel model”

argmax
Y

P (Y∣X )=argmax
Y

P (X∣Y )P(Y )

P (X )

=argmax
Y

P (X∣Y )P(Y )

Model of word/POS interactions
“natural” is probably a JJ

Model of POS/POS interactions
NN comes after DET
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Hidden Markov Models (HMMs) for 
POS Tagging

● POS→POS transition probabilities
● Like a bigram model!

● POS→Word emission probabilities

natural language processing (         nlp           )          ...

<s> JJ NN NN LRB NN RRB ... </s>

P
T
(JJ|<s>) P

T
(NN|JJ) P

T
(NN|NN) …

P
E
(natural|JJ) P

E
(language|NN) P

E
(processing|NN) …

P (Y )≈∏i=1

I+ 1
PT (y i∣y i−1 )

P (X∣Y )≈∏1

I
PE( x i∣y i )

* *

* *
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Learning Markov Models (with tags)

● Count the number of occurrences in the corpus and

             natural language processing (   nlp   )       is   …

<s>           JJ          NN          NN     LRB NN RRB VB … </s>

● Divide by context to get probability

P
T
(LRB|NN) = c(NN LRB)/c(NN) = 1/3

P
E
(language|NN) = c(NN → language)/c(NN) = 1/3

c(JJ→natural)++ c(NN→language)++

c(<s> JJ)++ c(JJ NN)++ …

…
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Remember: HMM Viterbi Algorithm

● Forward step, calculate the best path to a node
● Find the path to each node with the lowest negative log 

probability
● Backward step, reproduce the path

● This is easy, almost the same as word segmentation
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Forward Step: Part 1

● First, calculate transition from <S> and emission of the 
first word for every POS

1:NN

1:JJ

1:VB

1:PRN

1:NNP

…

0:<S>

I

best_score[“1 NN”] = -log P
T
(NN|<S>) + -log P

E
(I | NN)

best_score[“1 JJ”] = -log P
T
(JJ|<S>) + -log P

E
(I | JJ)

best_score[“1 VB”] = -log P
T
(VB|<S>) + -log P

E
(I | VB)

best_score[“1 PRN”] = -log P
T
(PRN|<S>) + -log P

E
(I | PRN)

best_score[“1 NNP”] = -log P
T
(NNP|<S>) + -log P

E
(I | NNP)
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Forward Step: Middle Parts

● For middle words, calculate the minimum score for all 
possible previous POS tags

1:NN

1:JJ

1:VB

1:PRN

1:NNP

…

I
best_score[“2 NN”] = min( 
 best_score[“1 NN”] + -log P

T
(NN|NN) + -log P

E
(visited | NN),

 best_score[“1 JJ”] + -log P
T
(NN|JJ) + -log P

E
(visited | NN),

 best_score[“1 VB”] + -log P
T
(NN|VB) + -log P

E
(visited | NN),

 best_score[“1 PRN”] + -log P
T
(NN|PRN) + -log P

E
(visited | NN),

 best_score[“1 NNP”] + -log P
T
(NN|NNP) + -log P

E
(visited | NN),

 ...
)

2:NN

2:JJ

2:VB

2:PRN

2:NNP

…

visited

best_score[“2 JJ”] = min( 
 best_score[“1 NN”] + -log P

T
(JJ|NN) + -log P

E
(visited | JJ),

 best_score[“1 JJ”] + -log P
T
(JJ|JJ) + -log P

E
(visited | JJ),

 best_score[“1 VB”] + -log P
T
(JJ|VB) + -log P

E
(visited | JJ),

                                         ...
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The Structured Perceptron
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So Far, We Have Learned

Classifiers

Perceptron

Lots of features

Binary prediction

Generative Models

HMM

Conditional probabilities

Structured prediction



  29

Sequential Data Modeling – The Structured Perceptron

Structured Perceptron

Classifiers

Perceptron

Lots of features

Binary prediction

Generative Models

HMM

Conditional probabilities

Structured prediction

Structured perceptron →
Classification with lots of features

over structured models!
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Why are Features Good?

● Can easily try many different ideas
● Are capital letters usually nouns?
● Are words that end with -ed usually verbs? -ing?
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Restructuring HMM With Features

P (X ,Y )=∏1

I
PE( x i∣y i )∏i=1

I+ 1
PT ( y i∣y i−1)Normal HMM:
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Restructuring HMM With Features

P (X ,Y )=∏1

I
PE( x i∣y i )∏i=1

I+ 1
PT ( y i∣y i−1)Normal HMM:

logP (X ,Y )=∑1

I
logPE( x i∣y i )∑i=1

I+ 1
logPT ( y i∣y i −1)Log Likelihood:
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Restructuring HMM With Features

P (X ,Y )=∏1

I
PE( x i∣y i )∏i=1

I+ 1
PT ( y i∣y i−1)Normal HMM:

logP (X ,Y )=∑1

I
logPE( x i∣y i )∑i=1

I+ 1
logPT ( y i∣y i −1)Log Likelihood:

S (X ,Y )=∑1

I
w E , y i , x i

∑i=1

I+ 1
wT ,y i−1 , y i

Score
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Restructuring HMM With Features

P (X ,Y )=∏1

I
PE( x i∣y i )∏i=1

I+ 1
PT ( y i∣y i−1)Normal HMM:

logP ( X ,Y )=∑i=1

I
logPE (x i∣y i )+∑i=1

I+1
logPT (y i∣y i−1)

Log Likelihood:

S (X ,Y )=∑i =1

I
w E , y i , x i

+∑i =1

I+1
w E , y i −1 , y i

Score

w E , y i , x i
= logPE (x i∣y i)When: wT , y i−1 , y i

=logPT ( y i∣y i−1)

log P(X,Y) = S(X,Y)
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Example
I       visited      Nara

PRN      VBD       NNP
φ(                           ) =

I       visited      Nara

NNP      VBD      NNP
φ(                           ) =

φ
T,<S>,PRN

(X,Y
1
) = 1 φ

T,PRN,VBD
(X,Y

1
) = 1 φ

T,VBD,NNP
(X,Y

1
) = 1 φ

T,NNP,</S>
(X,Y

1
) = 1

φ
E,PRN,”I”

(X,Y
1
) = 1 φ

E,VBD,”visited”
(X,Y

1
) = 1 φ

E,NNP,”Nara”
(X,Y

1
) = 1

φ
T,<S>,NNP

(X,Y
1
) = 1 φ

T,NNP,VBD
(X,Y

1
) = 1 φ

T,VBD,NNP
(X,Y

1
) = 1 φ

T,NNP,</S>
(X,Y

1
) = 1

φ
E,NNP,”I”

(X,Y
1
) = 1 φ

E,VBD,”visited”
(X,Y

1
) = 1 φ

E,NNP,”Nara”
(X,Y

1
) = 1

φ
CAPS,PRN

(X,Y
1
) = 1 φ

CAPS,NNP
(X,Y

1
) = 1

φ
CAPS,NNP

(X,Y
1
) = 2

φ
SUF,VBD,”...ed”

(X,Y
1
) = 1

φ
SUF,VBD,”...ed”

(X,Y
1
) = 1
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Finding the Best Solution

● We must find the POS sequence that satisfies:

Ŷ=argmaxY∑i
w i ϕi (X ,Y )
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HMM Viterbi with Features

● Same as probabilities, use feature weights

1:NN

1:JJ

1:VB

1:PRN

1:NNP

…

0:<S>

I

best_score[“1 NN”] = w
T,<S>,NN

 + w
E,NN,I

best_score[“1 JJ”] = w
T,<S>,JJ

 + w
E,JJ,I

best_score[“1 VB”] = w
T,<S>,VB

 + w
E,VB,I

best_score[“1 PRN”] = w
T,<S>,PRN

 + w
E,PRN,I

best_score[“1 NNP”] = w
T,<S>,NNP

 + w
E,NNP,I
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HMM Viterbi with Features

● Can add additional features

1:NN

1:JJ

1:VB

1:PRN

1:NNP

…

0:<S>

I

best_score[“1 NN”] = w
T,<S>,NN

 + w
E,NN,I

 + w
CAPS,NN

best_score[“1 JJ”] = w
T,<S>,JJ

 + w
E,JJ,I

 + w
CAPS,JJ

best_score[“1 VB”] = w
T,<S>,VB

 + w
E,VB,I

 + w
CAPS,VB

best_score[“1 PRN”] = w
T,<S>,PRN

 + w
E,PRN,I

 + w
CAPS,PRN

best_score[“1 NNP”] = w
T,<S>,NNP

 + w
E,NNP,I

 + w
CAPS,NNP
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Learning In the Structured Perceptron

● Remember the perceptron algorithm

● If there is a mistake:

● Update weights to:
increase score of positive examples
decrease score of negative examples

● What is positive/negative in structured perceptron?

w ←w+ y ϕ(x)
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Learning in the Structured Perceptron

● Positive example, correct feature vector:

● Negative example, incorrect feature vector:

I       visited      Nara

PRN      VBD       NNP
φ(                           )

I       visited      Nara

NNP      VBD       NNP
φ(                           )
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Choosing an Incorrect Feature Vector

● There are too many incorrect feature vectors!

● Which do we use?

I       visited      Nara

NNP      VBD       NNP
φ(                           )

I       visited      Nara

PRN      VBD        NN
φ(                           )

I       visited      Nara

PRN        VB       NNP
φ(                           )



  42

Sequential Data Modeling – The Structured Perceptron

Choosing an Incorrect Feature Vector

● Answer: We update using the incorrect answer with 
the highest score:

● Our update rule becomes:

● (Y' is the correct answer)
● Note: If highest scoring answer is correct, no change

Ŷ=argmaxY∑i
w i ϕi (X ,Y )

w ←w+ ϕ(X ,Y ' )−ϕ(X , Ŷ )
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Example
φ

T,<S>,PRN
(X,Y

1
) = 1 φ

T,PRN,VBD
(X,Y

1
) = 1 φ

T,VBD,NNP
(X,Y

1
) = 1 φ

T,NNP,</S>
(X,Y

1
) = 1

φ
E,PRN,”I”

(X,Y
1
) = 1 φ

E,VBD,”visited”
(X,Y

1
) = 1 φ

E,NNP,”Nara”
(X,Y

1
) = 1

φ
T,<S>,NNP

(X,Y
1
) = 1 φ

T,NNP,VBD
(X,Y

1
) = 1 φ

T,VBD,NNP
(X,Y

1
) = 1 φ

T,NNP,</S>
(X,Y

1
) = 1

φ
E,NNP,”I”

(X,Y
1
) = 1 φ

E,VBD,”visited”
(X,Y

1
) = 1 φ

E,NNP,”Nara”
(X,Y

1
) = 1

φ
CAPS,PRN

(X,Y
1
) = 1 φ

CAPS,NNP
(X,Y

1
) = 1

φ
CAPS,NNP

(X,Y
1
) = 2

φ
SUF,VBD,”...ed”

(X,Y
1
) = 1

φ
SUF,VBD,”...ed”

(X,Y
1
) = 1

φ
T,<S>,PRN

(X,Y
1
) = 1

φ
T,NNP,VBD

(X,Y
1
) = -1

φ
T,VBD,NNP

(X,Y
1
) = 0 φ

T,NNP,</S>
(X,Y

1
) = 0

φ
E,NNP,”I”

(X,Y
1
) = -1

φ
E,VBD,”visited”

(X,Y
1
) = 0 φ

E,NNP,”Nara”
(X,Y

1
) = 0

φ
CAPS,NNP

(X,Y
1
) = -1 φ

SUF,VBD,”...ed”
(X,Y

1
) = 0

φ
T,<S>,NNP

(X,Y
1
) = -1

φ
E,PRN,”I”

(X,Y
1
) = 1

φ
T,PRN,VBD

(X,Y
1
) = 1

φ
CAPS,PRN

(X,Y
1
) = 1

-

=
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Structured Perceptron Algorithm

create map w
for I iterations

for each labeled pair X, Y_prime in the data
Y_hat = hmm_viterbi(w, X)
phi_prime = create_features(X, Y_prime)
phi_hat = create_features(X, Y_hat)
w += phi_prime - phi_hat
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Conclusion

● The structured perceptron is a discriminative 
structured prediction model
● HMM: generative structured prediction
● Perceptron: discriminative binary prediction

● It can be used for many problems
● Prediction of 
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Thank You!
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