NLP Programming Tutorial 6 - Advanced Discriminative Learning

Graham Neubig
Nara Institute of Science and Technology (NAIST)
Review: Classifiers and the Perceptron
Prediction Problems

Given x, predict y
Example we will use:

- Given an introductory sentence from Wikipedia
- Predict whether the article is about a person

<table>
<thead>
<tr>
<th>Given</th>
<th>Predict</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gonso was a Sanron sect priest (754-827) in the late Nara and early Heian periods.</td>
<td>Yes!</td>
</tr>
<tr>
<td>Shichikuzan Chigogataki Fudomyoo is a historical site located at Magura, Maizuru City, Kyoto Prefecture.</td>
<td>No!</td>
</tr>
</tbody>
</table>

- This is binary classification
Mathematical Formulation

\[y = \text{sign}(w \cdot \varphi(x)) \]
\[= \text{sign}\left(\sum_{i=1}^{I} w_i \cdot \varphi_i(x)\right) \]

- \(x \): the input
- \(\varphi(x) \): vector of feature functions \(\{\varphi_1(x), \varphi_2(x), \ldots, \varphi_I(x)\} \)
- \(w \): the weight vector \(\{w_1, w_2, \ldots, w_I\} \)
- \(y \): the prediction, +1 if “yes”, -1 if “no”
 - (sign(v) is +1 if \(v \geq 0 \), -1 otherwise)
Online Learning

```python
create map w
for / iterations
    for each labeled pair x, y in the data
        phi = create_features(x)
        y' = predict_one(w, phi)
        if y' != y
            update_weights(w, phi, y)
```

- In other words
 - Try to classify each training example
 - Every time we make a mistake, update the weights
- Many different online learning algorithms
 - The most simple is the perceptron
Perceptron Weight Update

\[\mathbf{w} \leftarrow \mathbf{w} + y \varphi(\mathbf{x}) \]

- In other words:
 - If \(y = 1 \), increase the weights for features in \(\varphi(\mathbf{x}) \)
 - Features for positive examples get a higher weight
 - If \(y = -1 \), decrease the weights for features in \(\varphi(\mathbf{x}) \)
 - Features for negative examples get a lower weight

→ Every time we update, our predictions get better!

```python
update_weights(w, phi, y)
for name, value in phi:
    w[name] += value * y
```
Stochastic Gradient Descent and Logistic Regression
Perceptron and Probabilities

- Sometimes we want the **probability** \(P(y|x) \)
- Estimating **confidence** in predictions
- **Combining** with other systems
- However, perceptron only gives us a **prediction**

\[
y = \text{sign} \left(w \cdot \varphi(x) \right)
\]

In other words:

\[
P(y = 1|x) = 1 \quad \text{if} \quad w \cdot \varphi(x) \geq 0
\]
\[
P(y = 1|x) = 0 \quad \text{if} \quad w \cdot \varphi(x) < 0
\]
The Logistic Function

- The **logistic function** is a “softened” version of the function used in the perceptron

\[P(y = 1 | x) = \frac{e^{w \cdot \phi(x)}}{1 + e^{w \cdot \phi(x)}} \]

- Can account for uncertainty
- Differentiable
Logistic Regression

• Train based on **conditional likelihood**

• Find the parameters \(\mathbf{w} \) that maximize the conditional likelihood of all answers \(y_i \) given the example \(x_i \)

\[
\hat{\mathbf{w}} = \text{argmax} \prod_{i} P(y_i|x_i; \mathbf{w})
\]

• How do we solve this?
Stochastic Gradient Descent

- Online training algorithm for probabilistic models (including logistic regression)

```python
create map w
for / iterations
    for each labeled pair x, y in the data
        w += α * dP(y|x)/dw
```

- In other words
 - For every training example, calculate the gradient (the direction that will increase the probability of y)
 - Move in that direction, multiplied by learning rate α
Gradient of the Logistic Function

- Take the derivative of the probability

\[
\frac{d}{dw} P(y = 1 | x) = \frac{d}{dw} \frac{e^{w \cdot \varphi(x)}}{1 + e^{w \cdot \varphi(x)}}
\]

\[
= \varphi(x) \frac{e^{w \cdot \varphi(x)}}{(1 + e^{w \cdot \varphi(x)})^2}
\]

\[
\frac{d}{dw} P(y = -1 | x) = \frac{d}{dw} \left(1 - \frac{e^{w \cdot \varphi(x)}}{1 + e^{w \cdot \varphi(x)}}\right)
\]

\[
= -\varphi(x) \frac{e^{w \cdot \varphi(x)}}{(1 + e^{w \cdot \varphi(x)})^2}
\]
Example: Initial Update

- Set $\alpha=1$, initialize $w=0$

$x = \text{A site , located in Maizuru , Kyoto} \quad y = -1$

\[
\begin{align*}
 w \cdot \varphi(x) &= 0 \\
 \frac{d}{dw} P(y=-1|x) &= -\frac{e^0}{(1+e^0)^2} \varphi(x) \\
 &= -0.25 \varphi(x)
\end{align*}
\]

\[
\begin{align*}
 w &\leftarrow w + -0.25 \varphi(x)
\end{align*}
\]

\[
\begin{align*}
 w_{\text{unigram "Maizuru"}} &= -0.25 \\
 w_{\text{unigram ","}} &= -0.5 \\
 w_{\text{unigram "in"}} &= -0.25 \\
 w_{\text{unigram "Kyoto"}} &= -0.25 \\
 w_{\text{unigram "A"}} &= -0.25 \\
 w_{\text{unigram "site"}} &= -0.25 \\
 w_{\text{unigram "located"}} &= -0.25
\end{align*}
\]
Example: Second Update

\[x = \text{Shoken, monk born in Kyoto} \quad \quad y = 1 \]

\[w \cdot \varphi(x) = -1 \quad \quad \frac{d}{d w} P(y = 1|x) = \frac{e^1}{(1+e^1)^2} \varphi(x) = 0.196 \varphi(x) \]

\[w \leftarrow w + 0.196 \varphi(x) \]

\[
\begin{align*}
W_{\text{unigram "Maizuru"}} &= -0.25 \\
W_{\text{unigram ","}} &= -0.304 \\
W_{\text{unigram "in"}} &= -0.054 \\
W_{\text{unigram "Kyoto"}} &= -0.054 \\
W_{\text{unigram "A"}} &= -0.25 \\
W_{\text{unigram "site"}} &= -0.25 \\
W_{\text{unigram "located"}} &= -0.25 \\
W_{\text{unigram "Shoken"}} &= 0.196 \\
W_{\text{unigram "monk"}} &= 0.196 \\
W_{\text{unigram "born"}} &= 0.196
\end{align*}
\]
SGD Learning Rate?

- How to set the learning rate α?
- Usually decay over time:

$$\alpha = \frac{1}{C + t}$$

 - parameter
 - number of samples

- Or, use held-out data, and reduce the learning rate when the likelihood rises
Classification Margins
Choosing between Equally Accurate Classifiers

- Which classifier is better? Dotted or Dashed?
Choosing between Equally Accurate Classifiers

- Which classifier is better? Dotted or Dashed?

- Answer: Probably the dashed line.

- Why?: It has a larger margin.
What is a Margin?

- The distance between the classification plane and the nearest example:
Support Vector Machines

- Most famous margin-based classifier
 - **Hard Margin**: Explicitly maximize the margin
 - **Soft Margin**: Allow for some mistakes
- Usually use batch learning
 - **Batch learning**: slightly higher accuracy, more stable
 - **Online learning**: simpler, less memory, faster convergence
- Learn more about SVMs:
- Batch learning libraries:
 LIBSVM, LIBLINEAR, SVMLite
Online Learning with a Margin

- Penalize not only mistakes, but also correct answers under a margin

```python
create map w
for / iterations
    for each labeled pair x, y in the data
        phi = create_features(x)
        val = w * phi * y
        if val <= margin
            update_weights(w, phi, y)

(A correct classifier will always make $w \times \phi \times y > 0$)
If margin = 0, this is the perceptron algorithm
```
Regularization
Cannot Distinguish Between Large and Small Classifiers

• For these examples:

-1 he saw a bird in the park
+1 he saw a robbery in the park

• Which classifier is better?

<table>
<thead>
<tr>
<th>Classifier 1</th>
<th>Classifier 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>he +3</td>
<td>bird -1</td>
</tr>
<tr>
<td>saw -5</td>
<td>robbery +1</td>
</tr>
<tr>
<td>a +0.5</td>
<td></td>
</tr>
<tr>
<td>bird -1</td>
<td></td>
</tr>
<tr>
<td>robbery +1</td>
<td></td>
</tr>
<tr>
<td>in +5</td>
<td></td>
</tr>
<tr>
<td>the -3</td>
<td></td>
</tr>
<tr>
<td>park -2</td>
<td></td>
</tr>
</tbody>
</table>
Cannot Distinguish Between Large and Small Classifiers

• For these examples:

<table>
<thead>
<tr>
<th>Classifier 1</th>
<th>Classifier 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>he +3</td>
<td>bird -1</td>
</tr>
<tr>
<td>saw -5</td>
<td>robbery +1</td>
</tr>
<tr>
<td>a +0.5</td>
<td></td>
</tr>
<tr>
<td>bird -1</td>
<td></td>
</tr>
<tr>
<td>robbery +1</td>
<td></td>
</tr>
<tr>
<td>in +5</td>
<td></td>
</tr>
<tr>
<td>the -3</td>
<td></td>
</tr>
<tr>
<td>park -2</td>
<td></td>
</tr>
</tbody>
</table>

-1 he saw a bird in the park
+1 he saw a robbery in the park

• Which classifier is better?

Probably classifier 2!
It doesn't use irrelevant information.
Regularization

- A penalty on adding extra weights

L2 regularization:
- Big penalty on large weights, small penalty on small weights
- **High accuracy**

L1 regularization:
- Uniform increase whether large or small
- Will cause many weights to become zero → **small model**
L1 Regularization in Online Learning

• After update, reduce the weight by a constant c

```python
update_weights(w, phi, y, c)
for name, value in w:
    if abs(value) < c:
        w[name] = 0
    else:
        w[name] -= sign(value) * c
for name, value in phi:
    w[name] += value * y
```

★ If abs. value < c, set weight to zero
★ If value > 0, decrease by c
★ If value < 0, increase by c
Example

- Every turn, we **Regularize, Update, Regularize, Update**

Regularization:
$$c = 0.1$$

Updates:
- \{1, 0\} on 1\(^{st}\) and 5\(^{th}\) turns
- \{0, -1\} on 3\(^{rd}\) turn

<table>
<thead>
<tr>
<th>Turn</th>
<th>Change</th>
<th>(w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_1)</td>
<td>{0, 0}</td>
<td>{0, 0}</td>
</tr>
<tr>
<td>(U_1)</td>
<td>{1, 0}</td>
<td>{1, 0}</td>
</tr>
<tr>
<td>(R_2)</td>
<td>{-0.1, 0}</td>
<td>{0.9, 0}</td>
</tr>
<tr>
<td>(U_2)</td>
<td>{0, 0}</td>
<td>{0.9, 0}</td>
</tr>
<tr>
<td>(R_3)</td>
<td>{-0.1, 0}</td>
<td>{0, 0}</td>
</tr>
<tr>
<td>(U_3)</td>
<td>{-0.1, 0}</td>
<td>{0.8, 0}</td>
</tr>
<tr>
<td>(R_4)</td>
<td>{-0.1, 0.1}</td>
<td>{0, 0}</td>
</tr>
<tr>
<td>(U_4)</td>
<td>{0, 0}</td>
<td>{0.7, -0.9}</td>
</tr>
<tr>
<td>(R_5)</td>
<td>{-0.1, 0.1}</td>
<td>{0.7, -0.9}</td>
</tr>
<tr>
<td>(U_5)</td>
<td>{1, 0}</td>
<td>{0.6, -0.8}</td>
</tr>
<tr>
<td>(R_6)</td>
<td>{-0.1, 0.1}</td>
<td>{1.6, -0.8}</td>
</tr>
<tr>
<td>(U_6)</td>
<td>{0, 0}</td>
<td>{1.5, -0.7}</td>
</tr>
</tbody>
</table>
Efficiency Problems

- Typical number of features:
 - Each sentence (ϕ): 10~1000
 - Overall (w): 1,000,000~100,000,000

```python
update_weights(w, phi, y, c)
    for name, value in w:
        if abs(value) <= c:
            w[name] = 0
        else:
            w[name] -= sign(value) * c
    for name, value in phi:
        w[name] += value * y
```

This loop is VERY SLOW!
Efficiency Trick

• Regularize **only when the value is used!**

```python
getw(w, name, c, iter, last)
    if iter != last[name]:  # regularize several times
        c_size = c * (iter - last[name])
        if abs(w[name]) <= c_size:
            w[name] = 0
        else:
            w[name] -= sign(w[name]) * c_size
    last[name] = iter
return w[name]
```

• This is called “lazy evaluation”, used in many applications
Choosing the Regularization Constant

- The regularization constant c has a large effect

- **Large value**
 - small model
 - lower score on training set
 - less overfitting

- **Small value**
 - large model
 - higher score on training set
 - more overfitting

- Choose best regularization value on development set
 - e.g. 0.0001, 0.001, 0.01, 0.1, 1.0
Exercise
Exercise

• Write program:
 • train-svm/train-lr: Create an svm or LR model with L2 regularization constant 0.001
• Train a model on data-en/titles-en-train.labeled
• Predict the labels of data-en/titles-en-test.word
• Grade your answers and compare them with the perceptron
 • script/grade-prediction.py data-en/titles-en-test.labeled your_answer
• Extra challenge:
 • Try many different regularization constants
 • Implement the efficiency trick
Thank You!