
CS11-747 Neural Networks for NLP

Models w/ Latent Random
Variables

Graham Neubig

Site
https://phontron.com/class/nn4nlp2017/

https://phontron.com/class/nn4nlp2017/

Discriminative vs.
Generative Models

• Discriminative model: calculate the probability of output given
input P(Y|X)

• Generative model: calculate the probability of a variable P(X),
or multiple variables P(X,Y)

• Which of the following models are discriminative vs. generative?

• Standard BiLSTM POS tagger

• Globally normalized CRF POS tagger

• Language model

Types of Variables
• Observed vs. Latent:

• Observed: something that we can see from our data, e.g. X or Y

• Latent: a variable that we assume exists, but we aren’t given the
value

• Deterministic vs. Random:

• Deterministic: variables that are calculated directly according
to some deterministic function

• Random (stochastic): variables that obey a probability
distribution, and may take any of several (or infinite) values

Quiz: What Types of
Variables?

• In the an attentional sequence-to-sequence model
using MLE/teacher forcing, are the following variables
observed or latent? deterministic or random?

• The input word ids f

• The encoder hidden states h

• The attention values a

• The output word ids e

Variational Auto-encoders
(Kingma and Welling 2014)

Why Latent Random
Variables?

• We believe that there are underlying latent factors that
affect the text/images/speech that we are observing

• What is the content of the sentence?

• Who is the writer/speaker?

• What is their sentiment?

• What words are aligned to others in a translation?

• All of these have a correct answer, we just don’t know what
it is. Deterministic variables cannot capture this ambiguity.

A Latent Variable Model
• We observed output x (assume a continuous vector for now)

• We have a latent variable z generated from a Gaussian

• We have a function f, parameterized by Θ that maps from z
to x, where this function is usually a neural net

N

z~N(0, I)

x

Θ

x = f(z; Θ)

An Example (Goersch 2016)

z x

What is Our Loss Function?
• We would like to maximize the corpus log likelihood

logP (X) =

X

x2X
logP (x; ✓)

• For a single example, the marginal likelihood is

• We can approximate this by sampling zs then summing

P (x; ✓) =

Z
P (x | z; ✓)P (z)dz

P (x; ✓) ⇡
X

z2S(x)

P (x|z; ✓) where S(x) := {z0; z0 ⇠ P (z)}

Problem: Straightforward
Sampling is Inefficient

z x

Current
data pointLatent samples w/

non-negligible P(x|z)

Solution: “Inference Model”
• Predict which latent point produced the data point using inference

model Q(z|x)

• Acquire samples from inference model’s conditional for more
efficient training

• Called variational auto-encoder because it “encodes” with the
inference model, “decodes” with generative model

Q(z|x)

Disconnect Between
Samples and Objective

• We want to optimize the expectation

• But if we sample according to Q, we are actually
approximating

• How do we resolve this disconnect?

P (x; ✓) =

Z
P (x | z; ✓)P (z)dz

= Ez⇠P (z)[P (x | z; ✓)]

E
z⇠Q(z|x;�)[P (x | z; ✓)]

VAE Objective
• We can create an optimizable objective matching

our problem, starting with KL divergence

KL[Q(z | x)||P (z | x)] = E
z⇠Q(z|x)[logQ(z | x)� logP (z | x)]

Bayes’s Rule
KL[Q(z | x)||P (z | x)] = E

z⇠Q(z|x)[logQ(z | x)� logP (x | z)� logP (z)] + logP (x)

logP (x)�KL[Q(z | x)||P (z | x)] = E
z⇠Q(z|x)[logP (x | z)]� E

z⇠Q(z|x)[logQ(z | x)� logP (z)]

Rearrange/negate

logP (x)�KL[Q(z | x)||P (z | x)] = E
z⇠Q(z|x)[logP (x | z)]�KL[Q(z | x)||P (z)]

Definition of KL divergence

Interpreting the VAE
Objective

• Left side is what we want to optimize
• Marginal likelihood of x
• Accuracy of inference model

• Right side is what we can optimize
• Expectation according to Q of likelihood P(x|z)

(approximated by sampling from Q)
• Penalty for when Q diverges from prior P(z), calculable

in closed-form for Gaussians

logP (x)�KL[Q(z | x)||P (z | x)] = E
z⇠Q(z|x)[logP (x | z)]�KL[Q(z | x)||P (z)]

Problem! 
Sampling Breaks Backprop

Figure Credit: Doersch (2016)

Solution:  
Re-parameterization Trick

Figure Credit: Doersch (2016)

An Example: Generating Sentences
w/ Variational Autoencoders

Generating from Language
Models

• Remember: using ancestral sampling, we can
generate from a normal language model

• We can also generate conditioned on something
P(y|x) (e.g. translation, image captioning)

while xj-1 != “</s>”:
 xj ~ P(xj | x1, …, xj-1)

while yj-1 != “</s>”:
 yj ~ P(yj | X, y1, …, yj-1)

Generating Sentences from a
Continuous Space (Bowman et al. 2015)
• The VAE-based approach is conditional language

model that conditions on a latent variable z
• Like an encoder-decoder, but latent representation

is latent variable, input and output are identical

Q RNN

Sentence x

P RNN

Sentence xLatent z

Motivation for Latent
Variables

• Allows for a consistent latent space of sentences?

• e.g. interpolation between two sentences

•  
 
 
 
 

• More robust to noise? VAE can be viewed as
standard model + regularization.

Standard encoder-decoder VAE

Let’s Try it Out!
vae-lm.py

Difficulties in Training
• Of the two components in the VAE objective, the KL

divergence term is much easier to learn!

• Results in the model learning to rely solely on
decoder and ignore latent variable

logP (x)�KL[Q(z | x)||P (z | x)] = E
z⇠Q(z|x)[logP (x | z)]�KL[Q(z | x)||P (z)]

Requires good
generative model

Just need to
set the mean/variance
of Q to be same as P

Solution 1:  
KL Divergence Annealing

• Basic idea: Multiply KL term by a constant λ starting at
zero, then gradually increase to 1

• Result: model can learn to use z before getting penalized

Figure Credit: Bowman et al. (2017)

Solution 2:  
Weaken the Decoder

• But theoretically still problematic: it can be shown that
the optimal strategy is to ignore z when it is not
necessary (Chen et al. 2017)

• Solution: weaken decoder P(x|z) so using z is essential

• Use word dropout to occasionally skip inputting
previous word in x (Bowman et al. 2015)

• Use a convolutional decoder w/ limited context
(Yang et al. 2017)

Handling Discrete Latent
Variables

Discrete Latent Variables?

• Many variables are better treated as discrete

• Part-of-speech of a word

• Class of a question

• Speaker traits (gender, etc.)

• How do we handle these?

Method 1: Enumeration
• For discrete variables, our integral is a sum

P (x; ✓) =
X

z

P (x | z; ✓)P (z)

• If the number of possible configurations for z is
small, we can just sum over all of them

Method 2: Sampling
• Randomly sample a subset of configurations of z

and optimize with respect to this subset

• Various flavors:

• Marginal likelihood/minimum risk (previous class)

• Reinforcement learning (next class)

• Problem: cannot backpropagate through
sampling, resulting in very high variance

Method 3: Reparameterization
(Maddison et al. 2017, Jang et al. 2017)

• Reparameterization also possible for discrete variables!
Original Categorical Sampling Method:

ẑ = cat-sample(P (z | x))
Reparameterized Method

Gumbel(0, 1) = � log(� log(Uniform(0,1)))

where the Gumbel distribution is

• Backprop is still not possible, due to argmax

ˆ

z = argmax(logP (z | x) + Gumbel(0,1))

Gumbel-Softmax
• A way to soften the decision and allow for continuous

gradients

• Instead of argmax, take softmax with temperature τ  
 

• As τ approaches 0, will approach max

ˆ

z = softmax((logP (z | x) + Gumbel(0,1))

1/⌧
)

Application Examples
in NLP

Variational Models of Language
Processing (Miao et al. 2016)

• Present models with random variables for document
modeling and question-answer pair selection

• Why random variables? Documents: more consistent
space, question-answer more regularization?

Controllable Text Generation
(Hu et al. 2017)

• Creates a latent code z for content, and another
latent code c for various aspects that we would like
to control (e.g. sentiment)

• Both z and c are continuous variables

Controllable Sequence-to-sequence
(Zhou and Neubig 2017)

• Latent continuous and discrete variables can be trained
using auto-encoding or encoder-decoder objective

Symbol Sequence Latent
Variables (Miao and Blunsom 2016)

• Encoder-decoder with a sequence of latent symbols

• Summarization in Miao and Blunsom (2016)

• Attempts to “discover” language (e.g. Havrylov and Titov 2017)

• But things may not be so simple! (Kottur et al. 2017)

Recurrent Latent Variable
Models (Chung et al. 2015)

• Add a latent variable at each step of a recurrent
model

Questions?

