CS11-747 Neural Networks for NLP

A Simple (?) Exercise:
Predicting the Next Woro

Graham Neubig

P Carnegie Mellon University
#7»" Language Technologies Institute

Site
https://phontron.com/class/nn4nlp2017/

https://phontron.com/class/nn4nlp2017/

Are These Sentences OK?

* Jane went to the store.
* store to Jane went the.
* Jane went store.

* Jane goed to the store.
* [he store went to Jane.

* The food truck went to Jane.

Calculating the Probability of
a Sentence

P(X) :HP(ZEZ ‘ 261,...,337;_1)

AR

Next Word Context

The big problem: How do we predict
P(x; | x1,...,2i_1)
717

Review: Count-baseo
L anguage Models

Count-based Language
Models

* Count up the frequency and divide:
C(:Ci—n—l—la R 7372')
C(Ti—ny1s--sTi1)

PML(xi ‘ Ti—n41,--- ,a;'i_l) —

* Add smoothing, to deal with zero counts:

P(xi | Ti—nt1,---,Tiz1) =APyp(xs | ©i—ny1, - Tio1)
-+ (1 _ A)P(CE’L ‘ L1—n+42y--- ,332‘_1)

* Modified Kneser-Ney smoothing

A Refresher on Evaluation

* Log-likelihood:
LL(gtest) — Z 10gP(E)

* Per-word Log leellhood
WLL(Epest) = Z log P(E
ZEE&&@ t

EEgte ¢

* Per-word (Cross) Entropy

H (Etest) = ! Z —log, P(F)

ZEEgtest |E‘ EcE; o

* Perplexity:

PPl(Etest) = oH(Etest) — o—=WLL(Etest)

What Can we Do w/ LMs?

e Score sentences:

Jane went to the store . — high
store to Jane went the . — low

(same as calculating loss for training)

e (3enerate sentences:

while didn't choose end-of-sentence symbol:
calculate probability
sample a new word from the probabillity distribution

Problems and Solutions?

* Cannot share strength among similar words

she bought a car she bought a bicycle
she purchased a car she purchased a bicycle

e Cannot condition on context wit

— solution: class based language models

N intervening words

Dr. Jane Smith Dr. Gertrude Smith

— solution: skip-gram language models

* Cannot handle long-distance dependencies

for
for prog

tennis class he wanted to buy his own racquet

‘amming class he wanted to buy his own com

outer

— solution: cache, trigger, topic, syntactic models, etc.

An Alternative:
Featurized Log-Linear Models

An Alternative:
Featurized Models

* Calculate features of the context
* Based on the teatures, calculate probabilities

* Optimize feature weights using gradient descent,
etc.

Example:

Previous words: "giving a’

ce 25\ =0 D3 [2o

talk 02| wiadd 02 | woguing= 10 | s=| 1.0

gitt 0.1 0.1 2.0 2 D
hat \1.2/ \0.5/ \-1.2/ \0.6/
| | How likely How likely
Words we're How likely are they are they Total

predicting arethey? given prev. given 2nd prev. score
word is “a”? word is “giving”?

Softmax

* Convert scores into probabilities by taking the
exponent and normalizing (softmax)

—1
6s(x7;|a?§_n+1)

>,

/22\ /o.ooz\
2.9 0.003

| 1.0

2.2 0.444
0-6/ \0.090/

P(x; | 332:711+1) —

A Computation Graph View

giving a

(lookup2 | (lookupt | bias scores

b4
+ + =

b <
—

probs

softmaxj—E

Each vector is size of output vocabulary

A Note: "Lookup”

* Lookup can be viewed as “grabbing” a single
vector from a big matrix of word embeddings

num. words

[l Il LI IR LA

Vector 49999 9 9 99 <4

R L [L T S T [S T

" b4 OO OO
Slze L [T T [T = TS | | k 2

o Similarly, can be viewed as multiplying by a “one-

hot” vector
num. words /O\

[l Il LI IR LA

VeCtOr R R TR SIS TS S IS T 1

L [TSRS TSR] X

| b OO OO OO 0
SIZE I [S SIS S \O/
h. 4h 4h b 4 4 4 4 4 4 4

e Former tends to be faste

Training a Moadel

* Reminder: to train, we calculate a “loss
function” (a measure of how bad our predictions
are), and move the parameters to reduce the loss

* The most common loss function for probabilistic
models is "negative log likelihood”

/o.ooz\
It element 3 0.003

(or zero-indexed, 2) p= Jlog — 1.112
IS the correct answer: \0_444/

0.090

Parameter Update

* Back propagation allows us to calculate the
derivative of the loss with respect to the parameters

o
96

* Simple stochastic gradient descent optimizes
parameters according to the following rule
94

0<—0—a—
< &89

Choosing a Vocabulary

Unknown Words

e Necessity for UNK words
 We won't have all the words in the world in training data

e Larger vocabularies require more memory and
computation time

e« Common ways:
e Frequency threshold (usually UNK <= 1)

e Rank threshold

Evaluation and Vocabulary

* Important: the vocabulary must be the same over
models you compare

* Or more accurately, all models must be able to
generate the test set (it's OK if they can generate
more than the test set, but not less)

* e.9. Comparing a character-based model to a
word-based model is fair, but not vice-versa

Let’s try it out!
(loglin-Im.py)

What Problems are Handled?

* Cannot share strength among similar words

she bought a car she bought a bicycle
she purchased a car she purchased a bicycle

— not solved yet &

* Cannot condition on context with intervening words
Dr. Jane Smith Dr. Gertrude Smith

— solved! &

* Cannot handle long-distance dependencies

for tennis class he wanted to buy his own racquet
for programming class he wanted to buy his own computer

— not solved yet &

Beyond Linear Models

| Inear Models can't Learn
Feature Combinations

farmers eat steak = high cows eat steak — low
farmers eat hay — low cows eat hay — high

 [hese can't be expressed by linear features

 What can we do?
« Remember combinations as features (individual

scores for “farmers eat”, “cows eat”)
— Feature space explosion!

e Neural nets

Neural Language Models

giving a * (See Bengio et al. 2004)

\ /
(Iookup) Clookup]
g/

2 ﬁanh(

;: kV\/1*h + b+)
-

b <

W

POe®

r o~ r o~ —
b < b < R

b < b <
—_— (|
T+ @ = H softmax ’—» 2
b < b < D

bias scores probs

Where is Strength Shared?
giving a

\
[Iookup)

/ L
Gookup] Similar output words

get similar rows in
in the softmax matrix
@ -
tanh(Similar contexts get
@ kW#h + Db

/ similar hidden states

P =

b <

Word embeddings:
Similar input words |!
get similar vectors bias scores

b <

>4 -
» < < &
b < — {Softmax}
P -

,orbs

What Problems are Handled?

* Cannot share strength among similar words

she bought a car she bought a bicycle
she purchased a car she purchased a bicycle

— solved, and similar contexts as welll &

* Cannot condition on context with intervening words
Dr. Jane Smith Dr. Gertrude Smith

— solved! &

* Cannot handle long-distance dependencies

for tennis class he wanted to buy his own racquet
for programming class he wanted to buy his own computer

— not solved yet &

| et’s Try it Out!
(NN-IM.py)

Tying Input/Output
Embeaddings

giving a
 We can share parameters
Cpick row] (pick row between the input and output
h embeddings (Press et al.
2 2016, inter alia)
b <
ﬁanh(
: ka‘h + D)

H
H

P«
W + = I{softmax)—»l
b/as scores probs

Want to try? Delete the input embeddings, and
iInstead pick a row from the softmax matrix.

LS

Training Iricks

Shuffling the Training Data

* Stochastic gradient methods update the
parameters a little bit at a time

e What if we have the sentence “l love this
sentence so much!” at the end of the training
data 50 times”?

* Jo train correctly, we should randomly shuffle the
order at each time step

Other Optimization Options

 SGD with Momentum: Remember gradients from past
time steps to prevent sudden changes

 Adagrad: Adapt the learning rate to reduce learning
rate for frequently updated parameters (as measured
by the variance of the gradient)

« Adam: Like Adagrad, but keeps a running average of
momentum and gradient variance

 Many others: RMSProp, Adadelta, etc.
(See Ruder 2016 reference for more details)

Early Stopping, Learning
Rate Decay

* Neural nets have tons of parameters: we want to
prevent them from over-fitting

* We can do this by monitoring our performance on
held-out development data and stopping training
when It starts to get worse

* |t also sometimes helps to reduce the learning rate
and continue training

Which One to Use”

Adam is usually fast to converge and stable

But simple SGD tends to do very will in terms of
generalization

You should use learning rate decay, (e.g. on Machine
translation results by Denkowski & Neubig 2017)

WMT German-English s WMT English-Finnish WMT Romanian-English
I 271 .
- —a S F//I—I'
=13 = 26- |
a 8] (s8]
—4— Adam 12 —4— Adam 5 | ~4— Adam |
—&— SGD " —&— 5GD) —a— SGD

15 20) 10 12 14 4 6
Training Sentences (millions) Training Sentences (millions) Training Sentences (millions)

Dropout

* Neural nets have lots of parameters, and are prone
to overtfitting

* Dropout: randomly zero-out nodes in the hidden
layer with probabillity p at training time only

+ Because the number of nodes at training/test is
different, scaling is necessary:

e Standard dropout: scale by p at test time

* |Inverted dropout: scale by 1/(1-p) at training time

| et’'s Try it Out!
(Nn-Im-optim.py)

Efficiency Tricks:
Operation Batching

Efficiency Tricks:
Mini-patching

* On modern hardware 10 operations of size 1 is
much slower than 1 operation of size 10

* Minibatching combines together smaller operations
INto one big one

Minibatching

Operations w/o Minibatching

le

tanh(eee® @ +

000

b
®
®

@

) tanh(eee

Operations with Minibatching

W

X, X, X, > concat [

tanh(eee®

W
000

E::x

b W

+ g) tanh(eee

,~ | broadcast <— b
B

Manual Mini-batching

Group together similar operations (e.g. loss calculations
for a single word) and execute them all together

* In the case of a feed-forward language model, each
word prediction in a sentence can be batched

e For recurrent neural nets, etc., more complicated
How this works depends on toolkit

* Most toolkits have require you to add an extra
dimension representing the batch size

* DyNet has special minibatch operations for lookup
and loss functions, everything else automatic

Mini-batched Code Example

in_words ts a tuple (word_1, word_2)

out_label 1s an output labdel

word_1 = E[in_words[0]]

word_2 = E[in_words[1]]

; scores_sym = Wxdy.concatenate([word_1, word_2])+b
loss_sym = dy.pickneglogsoftmax(scores_sym, out_label)

(a) Non-minibatched classification.

in_words 1s a list [(word_{1,1}, word_{1,2}), (word_{2,1}, word_{2,2}), ...]
out_labels 25 a list of output labels [label_1, ladbel_2, ...]

s word_1_batch = dy.lookup_batch(E, [x[0] for x in in_words])

word_2_batch = dy.lookup_batch(E, [x[1] for x in in_words])

; scores_sym = Wxdy.concatenate([word_1_batch, word_2_batch])+b

loss_sym = dy.sum_batches(dy.pickneglogsoftmax_batch(scores_sym, out_labels))

(b) Minibatched classification.

| et’'s Try it Out!
(Nn-Im-batch.py)

Automatic Mini-batching!

Three input sequences,
different lengths.

* TensorFlow Fold, DyNet Autobatching (see Neubig et al.
2017)

e Jry it with the —dynet-autobatch command line option

Autobatching Usage

e for each minibatch:
e for each data point in mini-batch:
* define/add data
* sum losses
» forward (autobatch engine does magic!)
- backward

- update

Speed Improvements

%h W for calc back graph mback calc mupdate g&ﬁﬁﬁh mfor calc © back graph ®back calc ®™update

0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 10C 12C 140 160 180 200

N e ———t L e e

Soeon HE | o m— | 20 1w

e NE | | (e mmm

o[1| —— e 1|

§ Sipm 5 | e §<Dln | |

’ \Agenda Il - _ ’ \%endal I-
_Q;468101214161820 _Q—Z'468101214161820

Table 1: Sentences/second on various training tasks for increasingly challenging batching scenarios.

Task CPU GPU

NOAUTO BYDEPTH BYAGENDA NOAUTO BYDEPTH BYAGENDA
BiLSTM 16.8 139 156 56.2 337 367
BiLSTM w/ char 15.7 93.8 132 43.2 183 275
TreeLSTM 50.2 348 357 760.5 672 661
Transition-Parsing 16.8 61.0 61.2 33.0 89.5 90.1

Questions?

