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Two Types of
L inguistic Structure

* Dependency: focus on relations between words
ROOT

~AA D\ T

I saw a girl with a telescope

* Phrase structure: focus on the structure of the sentence
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Parsing

* Predicting linguistic structure from input sentence

* Transition-based models
e step through actions one-by-one until we have output
* like history-based model for POS tagging

- Dynamic programming-based models

« calculate probability of each edge/constituent, and perform
some sort of dynamic programming

e |ike linear CRF model for POS



Minimum Spanning Iree
Parsing Models



(First Order) Graph-based
Dependency Parsing

e Express sentence as fully connected directed graph

e Score each edge independently

e Find maximal spanning tree
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Graph-based vs.
Transition Based

- Transition-based

e + Easily condition on infinite tree context (structured
orediction)

» - Greedy search algorithm causes short-term mistakes
- Graph-based
 + Can find exact best global solution via DP algorithm

* - Have to make local independence assumptions



Chu-Liu-Edmonds

(Chu and Liu 1965, Edmonds 1967)

We have a graph and want to find its spanning tree

Greedily select the best incoming edge to each node
(and subtract its score from all incoming edges)

It there are cycles, select a cycle and contract it into a
single node

Recursively call the algorithm on the graph with the
contracted node

Expand the contracted node, deleting an edge
appropriately



Chu-Liu-Edmonds (1):
~FINnd the Best Incoming

Book Y ° that 8 flight
oo 12 7 8
w\ 7

(Figure Credit: Jurafsky and Martin)



Chu-Liu-Edmonds (2):
Subtract the Max for Each

(Figure Credit: Jurafsky and Martin)



Chu-Liu-Edmonds (3):
Contract a Node
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Chu-Liu-Edmonds (4):
Recursively Call Algorithm

(Figure Credit: Jurafsky and Martin)



Chu-Liu-Edmonds (5):
Expand Nodes and Delete Edge

Deleted from cycle

(Figure Credit: Jurafsky and Martin)



Other Dynamic Programs

* Eisner’s Algorithm (Eisner 1990):

A dynamic programming algorithm to combine together
trees in O(n3)

e Creates projective dependency trees (Chu-Liu-
Edmonds is non-projective)

e Tarjan’s Algorithm (Tarjan 1979, Gabow and Tarjan 1983):

e Like Chu-Liu-Edmonds, but better asymptotic runtime
O(m + n log n)



Training Algorithm

(McDonald et al. 2005)

* Basically use structured hinge loss (covered in
structured prediction class)

* Find the highest scoring tree, penalizing each
correct edge by the margin

* |f the found tree is not equal to the correct tree,
update parameters using hinge loss



a)

Features for Graph-based

Parsing (McDonald et al. 2005)

e \What featuresb)did we use before neural nets?

c)

Basic Uni-gram Features  Basic Big-ram Features In Between POS Features

p-word, p-pos p-word, p-pos, c-word, ¢-pos - - -

p-word p-pos, c-word, c-pos g Pos, b-pos, cvgosd POSTF

: p-word, c-ward, c-pos urrounding Word POS Features

p-pos ’ » ©7DO8 -pos, p- -pos-1, ¢-

c-word, c-pos p-word, p-pos, ¢-pos g-ﬁz-lp I:);sl !cci]f:qs- l1 ‘ci]fc?:

o p-word, p-pos, c-word — 1
~p-word. c-word P-pos. p-pos+l, c-pos, c-pos+1

C-pos 2 p-pos-1, p-pos, ¢-pos, ¢c-pos+1

p-pos, c-pos

Table 1: Features used by system. p-word: word of parent node in dependency tree. c-word: word of child
node. p-pos: POS of parent node. c-pos: POS of child node. p-pos+1: POS to the right of parent in sentence.
p-pos-1: POS to the left of parent. c-pos+1: POS to the right of child. c-pos-1: POS to the left of child.
b-pos: POS of a word in between parent and child nodes.
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| conjoined with arc direction and arc distance
so use POS combination features

* Also represent words w/ prefix if they are long



Higher-order Dependency Parsing

(e.g. Zhang and McDonald 2012)

* Consider multiple edges at a time when calculating scores

First Order
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| saw a girl with a telescope | saw a girl with a telescope

Second Order
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Third Order
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| saw a girl with a telescope | saw a girl with a telescope

* + Can extract more expressive features
* - Higher computational complexity, approximate search necessary



Neural Models for Graph-
pased Parsing



Neural Feature Combinators

(Pel et al. 2015)

Extract traditional features, let NN do feature
combination

e Similar to Chen and Manning (2014)’s transition-
based model

Use cube + tanh activation function
Use averaged embeddings of phrases

Use second-order features



Phrase Embeddings
(Peil et al. 2015)

* Motivation: words surrounding or between head
and dependent are important clues

* Take average of embeddings
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Do Neural Feature Combinators Help”
(Pei et al. 2015)

* Yes!
e 1st-order: LAS 90.39->91.37, speed 26 sent/sec

o 2nd-order: LAS 91.06->92.13, speed 10 sent/sec

e 2nd-order neural better than 3rd-order non-neural
at UAS



BILSTM Feature Extractors

(Kipperwasser and Goldberg 2016)
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Simpler and better accuracy than manual extraction



BiIAffine Classifier

(Dozat and Manning 2017)

-d )
hgarc-head) _ MLP(axrc-head) (rj) for head/dependent for each word

S(arc) _ H(arc—head)U(l)hgarc-dep)

(/

fy(arc-head) (2) Calculate score of each arc

» Just optimize the likelihood of the parent, no structured training
« This is a local model, with global decoding using MST at the end

» Best results (with careful parameter tuning) on universal
dependencies parsing task



Global Training

Previously: margin-based global training, local probabillistic
training

What about global probabilistic models?
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Algorithms for calculating partition functions:

* Projective parsing: Eisner algorithm is a bottom-up CKY-
style algorithm for dependencies (Eisner et al. 1996)

* Non-projective parsing: Matrix-tree theorem can compute
marginals over directed graphs (Koo et al. 2007)

Applied to neural models in Ma et al. (2017)



Dynamic Programming for
Phrase Structure Parsing



Phrase Structure Parsing

* Models to calculate phrase structure
S
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* Important insight: parsing is similar to tagging
e Tagging is search in a graph for the best path
* Parsing is search in a hyper-graph for the best tree



What is a Hyper-Graph?

 [he “degree” of an edge is the number of children

Degree 1 Deqgree 2
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degree of its edges

A graphis a hypergraph of degree 1!

Degree 3
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Tree Candidates as Hypergraphs

* With edges in one tree or another

s 4 . A
0.7 Two choices!
| Choose red, get the first tree

Choose blue, get the second tree
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Welghted Hypergraphs

* Like graphs, can add weights to hypergraph edges

* (Generally negative log probability of production
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Hypergraph Search: CKY Algorithm

* Find the highest-scoring tree given a CFG grammar

* Create a hypergraph containing all candidates for a
binarized grammar, do hypergraph search

score(e,) =
VP o -log(P(VP » VBD NP PP)) +
17 " gF’ best_score[VBD1,2] +
Y vV best_score[NP2,4] +
e ST P best_score[NP2,7]

4.7

24 score(ez) =

van 4 -log(P(VP - VBD NP)) +
1.2 best score[VBD1,2] +

best _score[VBD2,7]

best_edge[VB1,7] = argmin_ __ score

best_score[VB1,7] =
score(best_edge[VB1,7))

* Analogous to Viterbi algorithm, but Viterbi is over
graphs, CKY is over hyper-graphs



Hypergrapnh Partition Function:
Inside-outside Algorithm

* Find the marginal probability of each span given a
CFG grammar

* Partition function us probability of the top span
 Same as CKY, except we logsumexp instead of max
* Analogous to forward-backward algorithm, but

forward-backward is over graphs, inside-outside is
over hyper-graphs



Neural CRF Parsing

(Durrett and Klein 2015)

* Predict score of each span using FFNN

* Do discrete structured inference using CKY, inside-outside
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Span Labeling

(Stern et al. 2017)

 Simple idea: try to decide whether span is
constituent in tree or not
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PRP VBZ VBG NN . NN
input < She enjoys playing tennis . tennis
0 | 2 3 = 5
(a) Execution of the top-down parsing algorithm. (b) Output parse tree.

* Allows for various loss functions (local vs.
structured), inference algorithms (CKY, top down)



An Alternative:
Parse Reranking



An Alternative: Parse
Reranking

* You have a nice model, but it's hard to implement a
dynamic programming decoding algorithm

* [ry reranking!
* (Generate with an easy-to-decode model

* Rescore with your proposed model



Examples of Reranking

* |nside-outside recursive neural networks (Le and
Zuidema 2014)

* Parsing as language modeling (Choe and Charniak
20106)

* Recurrent neural network grammars (Dyer et al.
2016)



A Word of Caution about
Reran klﬂQ' (Fried et al. 2017)

e Your reranking model got SOTA results, great!

e But, it might be an effect of model combination (which we know
works very well)

 [he model generating the parses prunes down the search
space

e The reranking model chooses the best parse only in that space!

Scoring models
Candidates | RD RG RD+RG
RD | 92.22 9345 03.87
RG | 90.24 89.35 90.53
RD URG | 92.22 92.78 93.92




Questions?



