CS11-747 Neural Networks for NLP
Parsing with Dynamic
Programming

Graham Neubig
P Carnegie Mellon University
#7»" Language Technologies Institute

Site
https://phontron.com/class/nn4nlp2017/

https://phontron.com/class/nn4nlp2017/

Two Types of
L inguistic Structure

* Dependency: focus on relations between words
ROOT

~AA D\ T

I saw a girl with a telescope

* Phrase structure: focus on the structure of the sentence
S

e

PRP VBD DT NN

} } b l l
| saw a qirl vv|th a telescope

Parsing

* Predicting linguistic structure from input sentence

* Transition-based models
e step through actions one-by-one until we have output
* like history-based model for POS tagging

- Dynamic programming-based models

« calculate probability of each edge/constituent, and perform
some sort of dynamic programming

e |ike linear CRF model for POS

Minimum Spanning Iree
Parsing Models

(First Order) Graph-based
Dependency Parsing

e Express sentence as fully connected directed graph

e Score each edge independently

e Find maximal spanning tree

this

h

this

N/

1S =

1S

\ | 7 '\

e N e

example example example

Graph-based vs.
Transition Based

- Transition-based

e + Easily condition on infinite tree context (structured
orediction)

» - Greedy search algorithm causes short-term mistakes
- Graph-based
 + Can find exact best global solution via DP algorithm

* - Have to make local independence assumptions

Chu-Liu-Edmonds

(Chu and Liu 1965, Edmonds 1967)

We have a graph and want to find its spanning tree

Greedily select the best incoming edge to each node
(and subtract its score from all incoming edges)

It there are cycles, select a cycle and contract it into a
single node

Recursively call the algorithm on the graph with the
contracted node

Expand the contracted node, deleting an edge
appropriately

Chu-Liu-Edmonds (1):
~FINnd the Best Incoming

Book Y ° that 8 flight
oo 12 7 8
w\ 7

(Figure Credit: Jurafsky and Martin)

Chu-Liu-Edmonds (2):
Subtract the Max for Each

(Figure Credit: Jurafsky and Martin)

Chu-Liu-Edmonds (3):
Contract a Node

5“\\/)

' root l Book l<_ _6 _4 tf ‘)

R

-/

(Figure Credit: Jurafsky and Martin)

Chu-Liu-Edmonds (4):
Recursively Call Algorithm

(Figure Credit: Jurafsky and Martin)

Chu-Liu-Edmonds (5):
Expand Nodes and Delete Edge

Deleted from cycle

(Figure Credit: Jurafsky and Martin)

Other Dynamic Programs

* Eisner’s Algorithm (Eisner 1990):

A dynamic programming algorithm to combine together
trees in O(n3)

e Creates projective dependency trees (Chu-Liu-
Edmonds is non-projective)

e Tarjan’s Algorithm (Tarjan 1979, Gabow and Tarjan 1983):

e Like Chu-Liu-Edmonds, but better asymptotic runtime
O(m + n log n)

Training Algorithm

(McDonald et al. 2005)

* Basically use structured hinge loss (covered in
structured prediction class)

* Find the highest scoring tree, penalizing each
correct edge by the margin

* |f the found tree is not equal to the correct tree,
update parameters using hinge loss

a)

Features for Graph-based

Parsing (McDonald et al. 2005)

e \What featuresb)did we use before neural nets?

c)

Basic Uni-gram Features Basic Big-ram Features In Between POS Features

p-word, p-pos p-word, p-pos, c-word, ¢-pos - - -

p-word p-pos, c-word, c-pos g Pos, b-pos, cvgosd POSTF

: p-word, c-ward, c-pos urrounding Word POS Features

p-pos ’ » ©7DO8 -pos, p- -pos-1, ¢-

c-word, c-pos p-word, p-pos, ¢-pos g-ﬁz-lp I:);sl !cci]f:qs- l1 ‘ci]fc?:

o p-word, p-pos, c-word — 1
~p-word. c-word P-pos. p-pos+l, c-pos, c-pos+1

C-pos 2 p-pos-1, p-pos, ¢-pos, ¢c-pos+1

p-pos, c-pos

Table 1: Features used by system. p-word: word of parent node in dependency tree. c-word: word of child
node. p-pos: POS of parent node. c-pos: POS of child node. p-pos+1: POS to the right of parent in sentence.
p-pos-1: POS to the left of parent. c-pos+1: POS to the right of child. c-pos-1: POS to the left of child.
b-pos: POS of a word in between parent and child nodes.

c A
c A

| conjoined with arc direction and arc distance
so use POS combination features

* Also represent words w/ prefix if they are long

Higher-order Dependency Parsing

(e.g. Zhang and McDonald 2012)

* Consider multiple edges at a time when calculating scores

First Order
" 7
| saw a girl with a telescope | saw a girl with a telescope

Second Order

Y /T N\ S T T

| saw a girl with a telescope | saw a girl with a telescope
Third Order

/\K:\« A~ S T

| saw a girl with a telescope | saw a girl with a telescope

* + Can extract more expressive features
* - Higher computational complexity, approximate search necessary

Neural Models for Graph-
pased Parsing

Neural Feature Combinators

(Pel et al. 2015)

Extract traditional features, let NN do feature
combination

e Similar to Chen and Manning (2014)’s transition-
based model

Use cube + tanh activation function
Use averaged embeddings of phrases

Use second-order features

Phrase Embeddings
(Peil et al. 2015)

* Motivation: words surrounding or between head
and dependent are important clues

* Take average of embeddings

prefix infix suffix
'x(, x,' h X; m X5 x,;'
I S S A A T R
O © O (& (O
& © O & 8, & &
O (O] 1O O] |[Of (O |O
e | S | S— ~— — | — | S—
1]] |
l average l average l average
SR)
O & @
- N e
) () ()
© &, ©
N N -~

prefixembedding infix embedding suffix embedding

Do Neural Feature Combinators Help”
(Pei et al. 2015)

* Yes!
e 1st-order: LAS 90.39->91.37, speed 26 sent/sec

o 2nd-order: LAS 91.06->92.13, speed 10 sent/sec

e 2nd-order neural better than 3rd-order non-neural
at UAS

BILSTM Feature Extractors

(Kipperwasser and Goldberg 2016)

!

./;< l '
N

— —_— T~ —
,/_,r . “—. / ’J/ \/\ / ,/" ‘_‘\
MLP) (_MLP) \f. P) (_MLP)

—— \-____,— \ - . /__ _T_ e S
| T \\\[— | —

Vtho Vbrown V tox vjnmpr:d V.

i S — 1 1 1
(concat) ¢ concat) ¢ concar : f concal) (concat)
— — I - e — §— —— F—— "

- - - - - - - -— - - - - - — -

~] i '
------------------ ' :------j- e e .- e -a-
LST M/ L STM?t, " LSTM LSTM LST M7
Xthe Xkrown Ko Xjumpecd X
K R N
\\ \\ // N ~
~ . —r ~ —
~ — S —
~ -
S~ —

Simpler and better accuracy than manual extraction

BiIAffine Classifier

(Dozat and Manning 2017)

-d)
hgarc-head) _ MLP(axrc-head) (rj) for head/dependent for each word

S(arc) _ H(arc—head)U(l)hgarc-dep)

(/

fy(arc-head) (2) Calculate score of each arc

» Just optimize the likelihood of the parent, no structured training
« This is a local model, with global decoding using MST at the end

» Best results (with careful parameter tuning) on universal
dependencies parsing task

Global Training

Previously: margin-based global training, local probabillistic
training

What about global probabilistic models?

Y
ezljzll S(y[]'Xayla?yj—l)

PY | X) = v
(’) 3 Z'.i'lS(§j|X,@1,---a§j—1)
Z:YEV*6 ’

Algorithms for calculating partition functions:

* Projective parsing: Eisner algorithm is a bottom-up CKY-
style algorithm for dependencies (Eisner et al. 1996)

* Non-projective parsing: Matrix-tree theorem can compute
marginals over directed graphs (Koo et al. 2007)

Applied to neural models in Ma et al. (2017)

Dynamic Programming for
Phrase Structure Parsing

Phrase Structure Parsing

* Models to calculate phrase structure
S

/\ N

PRP VBD DT NN

oo b l l

| saw a qirl vvlth a telescope

* Important insight: parsing is similar to tagging
e Tagging is search in a graph for the best path
* Parsing is search in a hyper-graph for the best tree

What is a Hyper-Graph?

 [he “degree” of an edge is the number of children

Degree 1 Deqgree 2
PRP VBD VP
0,1 1,2 1,7
v ' o
VBD NP
Saw 1.2 2,7

degree of its edges

A graphis a hypergraph of degree 1!

Degree 3

VBD

1,2

VP
1,7

NP
2,4

~— -

PP
4,7

he degree of a hypergraph is the maximum

Example -

- 1 4 -

IO—2‘5—>1

\40

L

<2)—>(3'

2.1

Tree Candidates as Hypergraphs

* With edges in one tree or another

s 4 . A
0.7 Two choices!
| Choose red, get the first tree

Choose blue, get the second tree

N /
—» PP
4,7
NP NP
0.1 5,7
Y /\\\““\
PRP VBD DT NN IN DT NN
01 1.2 23 34 45 56 6,7

'y by Voo ¢
| saw a girl with a telescope

Welghted Hypergraphs

* Like graphs, can add weights to hypergraph edges

* (Generally negative log probability of production

S
Q,7
-log(P(S -~ NP VP)) /™ -log(P(VP - VBD NP))
{og(P(VP - VBD NP PP))” U
A= L T pp
Y 4.7
/ oA » ,-'/ T~ e
NP /S NP /NP
0,1 Yays 2.4 5,7
*) "/ ”I. \\"A ’/ ‘_,.// \“‘\.‘
PRP VBD DT NN IN DT NN
01 172 23 34 45 586 6,7

log(P(PRP - “I")) + v vy L v
| saw a girl with a telescope

Hypergraph Search: CKY Algorithm

* Find the highest-scoring tree given a CFG grammar

* Create a hypergraph containing all candidates for a
binarized grammar, do hypergraph search

score(e,) =
VP o -log(P(VP » VBD NP PP)) +
17 " gF’ best_score[VBD1,2] +
Y vV best_score[NP2,4] +
e ST P best_score[NP2,7]

4.7

24 score(ez) =

van 4 -log(P(VP - VBD NP)) +
1.2 best score[VBD1,2] +

best _score[VBD2,7]

best_edge[VB1,7] = argmin_ __ score

best_score[VB1,7] =
score(best_edge[VB1,7))

* Analogous to Viterbi algorithm, but Viterbi is over
graphs, CKY is over hyper-graphs

Hypergrapnh Partition Function:
Inside-outside Algorithm

* Find the marginal probability of each span given a
CFG grammar

* Partition function us probability of the top span
 Same as CKY, except we logsumexp instead of max
* Analogous to forward-backward algorithm, but

forward-backward is over graphs, inside-outside is
over hyper-graphs

Neural CRF Parsing

(Durrett and Klein 2015)

* Predict score of each span using FFNN

* Do discrete structured inference using CKY, inside-outside

N [/ \)
S P

NP VP

%

w o Jo
h DT NNP VBZ NP
/ \ The Fed issued

(_ /
\ ‘ / (f w) Structured inference
\ Ju / .

(discrete)

h 28

Feature extraction (continuous)

Span Labeling

(Stern et al. 2017)

 Simple idea: try to decide whether span is
constituent in tree or not

S S
| s ____------"'f.f-----
o] NP & NP vP
3 | { | r { P WY
% ~ ™~
Z vP & PRP VBZ S
2 | .
- . She enjoys ‘
5_ ’ 7 . S-VP | VP
7 | PN
v 9 NP VBG NP
playing
PRP VBZ VBG NN . NN
input < She enjoys playing tennis . tennis
0 | 2 3 = 5
(a) Execution of the top-down parsing algorithm. (b) Output parse tree.

* Allows for various loss functions (local vs.
structured), inference algorithms (CKY, top down)

An Alternative:
Parse Reranking

An Alternative: Parse
Reranking

* You have a nice model, but it's hard to implement a
dynamic programming decoding algorithm

* [ry reranking!
* (Generate with an easy-to-decode model

* Rescore with your proposed model

Examples of Reranking

* |nside-outside recursive neural networks (Le and
Zuidema 2014)

* Parsing as language modeling (Choe and Charniak
20106)

* Recurrent neural network grammars (Dyer et al.
2016)

A Word of Caution about
Reran klﬂQ' (Fried et al. 2017)

e Your reranking model got SOTA results, great!

e But, it might be an effect of model combination (which we know
works very well)

 [he model generating the parses prunes down the search
space

e The reranking model chooses the best parse only in that space!

Scoring models
Candidates | RD RG RD+RG
RD | 92.22 9345 03.87
RG | 90.24 89.35 90.53
RD URG | 92.22 92.78 93.92

Questions?

