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Waiting….



Why are Neural Networks 
Slow and What Can we Do?

• Big operations, especially for softmaxes over large 
vocabularies 

• → Approximate operations or use GPUs 

• GPUs love big operations, but hate doing lots of them 

• → Reduce the number of operations through 
optimized implementations or batching 

• Our networks are big, our data sets are big 

• → Use parallelism to process many data at once



Sampling-based 
Softmax Approximations



A Visual Example of the 
Softmax

p = softmax(                          +        )W h b



Sampling-based 
Approximations

• Calculate the denominator over a subset

W h b

• Sample negative examples according to distribution q

+ hW’ b’+
Correct Value

Negative Samples



Softmax
• Convert scores into probabilities by taking the 

exponent and normalizing (softmax)

This is expensive, would like to approximate
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Importance Sampling 
(Bengio and Senecal 2003)

• Sampling is a way to approximate a distribution we 
cannot calculate exactly 

• Basic idea: sample from arbitrary distribution Q 
(uniform/unigram), then re-weight with e^s/Q to 
approximate denominator 
 
 

• This is a biased estimator (esp. when N is small)
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Noise Contrastive Estimation 
(Mnih & Teh 2012)

• Basic idea: Try to guess whether it is a true sample 
or one of N random noise samples. Prob. of true:

P (d = 1 | xi,hi) =
P (xi | hi)

P (xi | hi) +N ⇤Q(xi | hi)

• Optimize the probability of guessing correctly:
EP [logP (d = 1 | xi,hi)] +N ⇤ EQ[logP (d = 0 | xi,hi)]

• During training, approx. with unnormalized prob.

(set      = 0)P̃ (xi | hi) = P (xi | hi)/e
chi chi



Simple Negative Sampling 
(Mikolov 2012)

• Used in word2vec 

• Basically, sample one positive k negative 
examples, calculate the log probabilities  
 
 
 

• Similar to NCE, but biased when k != |V| or Q is not 
uniform

P (d = 1 | xi,hi) =
P (xi | hi)

P (xi | hi) + 1



Mini-batching Negative 
Sampling

• Creating and arranging memory on the is 
expensive, especially on the GPU 

• Simple solution: select the same negative 
samples for each minibatch 

• (See Zoph et al. 2015 for details)



Let’s Try it Out!

wordemb-negative-
sampling.py



Structure-based 
Softmax Approximations



Structure-based 
Approximations

• We can also change the structure of the softmax to 
be more efficiently calculable 

• Class-based softmax

• Hierarchical softmax

• Binary codes



Class-based Softmax 
(Goodman 2001)

• Assign each word to a class 

• Predict class first, then word given class

• Quiz: What is the computational complexity?

hWc bc+P(c|h) = softmax(                                   )

hWx bx+P(x|c,h) = softmax(                                   )



Hierarchical Softmax 
(Morin and Bengio 2005)

• Create a tree-structure where we make one 
decision at every node

• Quiz: What is the computational complexity?

0 1 1 1 0 → word 14



Binary Code Prediction 
(Dietterich and Bakiri 1995, Oda et al. 2017)

• Choose all bits in a single prediction

• Simpler to implement and fast on GPU

hWc bc+σ(                                   ) = 
0 
1 
1 
1 
0 
↓ 

word 14



Let’s Try it Out!

wordemb-binary-code.py



Two Improvement to Binary 
Code Prediction

Hybrid Model Error Correcting Codes



Parallelism in  
Computation Graphs



Three Types of Parallelism

• Within-operation parallelism 

• Operation-wise parallelism 

• Example-wise parallelism

Model parallelism}
Data parallelism}



Within-operation Parallelism

• GPUs excel at this! 
• Libraries like MKL implement this on CPU, but gains less striking. 

• Thread management overhead is counter-productive when operations small.

W h

Thread 1

Thread 2

Thread 3

Thread 4



Operation-wise Parallelism
• Split each operation into a different thread, or 

different GPU device

• Difficulty: How do we minimize dependencies and 
memory movement?

W1 tanh(   ) σ(   ) *

Thread 3 Thread 4Thread 2Thread 1



Example-wise Parallelism
• Process each training example in a different thread or machine

• Difficulty: How do we accumulate gradients and 
keep parameters fresh across machines?

this is an example

this is another example

this is the best example

no, i’m the best example

Thread 1

Thread 2

Thread 3

Thread 4



GPU Training Tricks



GPUs vs. CPUs

Quick to start, top speed 
not shabby

Takes forever to get off the 
ground, but super-fast 

once flying

CPU, like a motorcycle GPU, like an airplane

Image Credit: Wikipedia



A Simple Example
• How long does a matrix-matrix multiply take?



Practically
• Use CPU for profiling, it’s plenty fast (esp. DyNet) and you can 

run many more experiments 

• For many applications, CPU is just as fast or faster than GPU: 
NLP analysis tasks with small or complicated data/networks 

• You see big gains on GPU when you have: 

• Very big networks (or softmaxes with no approximation) 

• Do mini-batching 

• Optimize things properly



Speed Trick 1:  
Don’t Repeat Operations

• Something that you can do once at the beginning 
of the sentence, don’t do it for every word!

for x in words_in_sentence: 
  vals.append( W * c + x )

Bad

W_c = W * c 
for x in words_in_sentence: 
  vals.append( W_c + x )

Good



Speed Trick 2: 
Reduce # of Operations

• e.g. can you combine multiple matrix-vector 
multiplies into a single matrix-matrix multiply? Do so!  
 
 
 
 
 
 

• (DyNet’s auto-batching does this for you (sometimes))

for x in words_in_sentence: 
  vals.append( W * x ) 
val = dy.concatenate(vals)

Bad

X = dy.concatenate_cols(words_in_sentence) 
val = W * X

Good



Speed Trick 3: 
Reduce CPU-GPU Data Movement
• Try to avoid memory moves between CPU and GPU. 

• When you do move memory, try to do it as early as 
possible (GPU operations are asynchronous)

Bad
for x in words_in_sentence: 
  # input data for x 
  # do processing

# input data for whole sentence 
for x in words_in_sentence: 
  # do processing

Good



What About Memory?

• Most GPUs only have up to 12GB, so memory is a 
major issue

• Minimize unnecessary operations, especially 
ones over big pieces of data 

• If absolutely necessary, use multiple GPUs (but try 
to minimize memory movement)



Let’s Try It!

slow-impl.py



Questions?


