
CS11-747 Neural Networks for NLP

Why is word2vec so fast?
Efficiency tricks for neural nets

Taylor Berg-Kirkpatrick

Site
https://phontron.com/class/nn4nlp2017/

https://phontron.com/class/nn4nlp2017/

Glamorous Life of an AI
Scientist

Perception Reality

Photo Credit: Antoine Miech @ Twitter

Waiting….

Why are Neural Networks
Slow and What Can we Do?

• Big operations, especially for softmaxes over large
vocabularies

• → Approximate operations or use GPUs

• GPUs love big operations, but hate doing lots of them

• → Reduce the number of operations through
optimized implementations or batching

• Our networks are big, our data sets are big

• → Use parallelism to process many data at once

Sampling-based
Softmax Approximations

A Visual Example of the
Softmax

p = softmax(+)W h b

Sampling-based
Approximations

• Calculate the denominator over a subset

W h b

• Sample negative examples according to distribution q

+ hW’ b’+
Correct Value

Negative Samples

Softmax
• Convert scores into probabilities by taking the

exponent and normalizing (softmax)

This is expensive, would like to approximate

P (x
i

| h
i

) =
e

s(xi|hi)

P
x̃i
e

s(x̃i|hi)

Z(h
i

) =
X

x̃i

es(x̃i|hi)

Importance Sampling
(Bengio and Senecal 2003)

• Sampling is a way to approximate a distribution we
cannot calculate exactly

• Basic idea: sample from arbitrary distribution Q
(uniform/unigram), then re-weight with e^s/Q to
approximate denominator 
 
 

• This is a biased estimator (esp. when N is small)

Z(h
i

) ⇡ 1

N

X

x̃i⇠Q(·|hi)

e

s(x̃i|hi)

Q(x̃
i

| h
i

)

Noise Contrastive Estimation
(Mnih & Teh 2012)

• Basic idea: Try to guess whether it is a true sample
or one of N random noise samples. Prob. of true:

P (d = 1 | xi,hi) =
P (xi | hi)

P (xi | hi) +N ⇤Q(xi | hi)

• Optimize the probability of guessing correctly:
EP [logP (d = 1 | xi,hi)] +N ⇤ EQ[logP (d = 0 | xi,hi)]

• During training, approx. with unnormalized prob.

(set = 0)P̃ (xi | hi) = P (xi | hi)/e
chi chi

Simple Negative Sampling
(Mikolov 2012)

• Used in word2vec

• Basically, sample one positive k negative
examples, calculate the log probabilities  
 
 
 

• Similar to NCE, but biased when k != |V| or Q is not
uniform

P (d = 1 | xi,hi) =
P (xi | hi)

P (xi | hi) + 1

Mini-batching Negative
Sampling

• Creating and arranging memory on the is
expensive, especially on the GPU

• Simple solution: select the same negative
samples for each minibatch

• (See Zoph et al. 2015 for details)

Let’s Try it Out!

wordemb-negative-
sampling.py

Structure-based
Softmax Approximations

Structure-based
Approximations

• We can also change the structure of the softmax to
be more efficiently calculable

• Class-based softmax

• Hierarchical softmax

• Binary codes

Class-based Softmax
(Goodman 2001)

• Assign each word to a class

• Predict class first, then word given class

• Quiz: What is the computational complexity?

hWc bc+P(c|h) = softmax()

hWx bx+P(x|c,h) = softmax()

Hierarchical Softmax
(Morin and Bengio 2005)

• Create a tree-structure where we make one
decision at every node

• Quiz: What is the computational complexity?

0 1 1 1 0 → word 14

Binary Code Prediction
(Dietterich and Bakiri 1995, Oda et al. 2017)

• Choose all bits in a single prediction

• Simpler to implement and fast on GPU

hWc bc+σ() =
0
1
1
1
0
↓

word 14

Let’s Try it Out!

wordemb-binary-code.py

Two Improvement to Binary
Code Prediction

Hybrid Model Error Correcting Codes

Parallelism in  
Computation Graphs

Three Types of Parallelism

• Within-operation parallelism

• Operation-wise parallelism

• Example-wise parallelism

Model parallelism}
Data parallelism}

Within-operation Parallelism

• GPUs excel at this!
• Libraries like MKL implement this on CPU, but gains less striking.

• Thread management overhead is counter-productive when operations small.

W h

Thread 1

Thread 2

Thread 3

Thread 4

Operation-wise Parallelism
• Split each operation into a different thread, or

different GPU device

• Difficulty: How do we minimize dependencies and
memory movement?

W1 tanh() σ() *

Thread 3 Thread 4Thread 2Thread 1

Example-wise Parallelism
• Process each training example in a different thread or machine

• Difficulty: How do we accumulate gradients and
keep parameters fresh across machines?

this is an example

this is another example

this is the best example

no, i’m the best example

Thread 1

Thread 2

Thread 3

Thread 4

GPU Training Tricks

GPUs vs. CPUs

Quick to start, top speed
not shabby

Takes forever to get off the
ground, but super-fast

once flying

CPU, like a motorcycle GPU, like an airplane

Image Credit: Wikipedia

A Simple Example
• How long does a matrix-matrix multiply take?

Practically
• Use CPU for profiling, it’s plenty fast (esp. DyNet) and you can

run many more experiments

• For many applications, CPU is just as fast or faster than GPU:
NLP analysis tasks with small or complicated data/networks

• You see big gains on GPU when you have:

• Very big networks (or softmaxes with no approximation)

• Do mini-batching

• Optimize things properly

Speed Trick 1:  
Don’t Repeat Operations

• Something that you can do once at the beginning
of the sentence, don’t do it for every word!

for x in words_in_sentence:
 vals.append(W * c + x)

Bad

W_c = W * c
for x in words_in_sentence:
 vals.append(W_c + x)

Good

Speed Trick 2:
Reduce # of Operations

• e.g. can you combine multiple matrix-vector
multiplies into a single matrix-matrix multiply? Do so!  
 
 
 
 
 
 

• (DyNet’s auto-batching does this for you (sometimes))

for x in words_in_sentence:
 vals.append(W * x)
val = dy.concatenate(vals)

Bad

X = dy.concatenate_cols(words_in_sentence)
val = W * X

Good

Speed Trick 3:
Reduce CPU-GPU Data Movement
• Try to avoid memory moves between CPU and GPU.

• When you do move memory, try to do it as early as
possible (GPU operations are asynchronous)

Bad
for x in words_in_sentence:
 # input data for x
 # do processing

input data for whole sentence
for x in words_in_sentence:
 # do processing

Good

What About Memory?

• Most GPUs only have up to 12GB, so memory is a
major issue

• Minimize unnecessary operations, especially
ones over big pieces of data

• If absolutely necessary, use multiple GPUs (but try
to minimize memory movement)

Let’s Try It!

slow-impl.py

Questions?

