CS11-737 Multilingual NLP
 Data-based Strategies to Low-resource MT

Graham Neubig
Carnegie Mellon University
Language Technologies Institute

Site
http://phontron.com/class/multiling2022/

Many slides from:
Xia, Mengzhou, et al. "Generalized data augmentation for low-resource translation." ACL 2019.

Data Challenges in Low-resource MT

- MT of high-resource languages (HRLs) with large parallel corpora \rightarrow relatively good translations

- MT of low-resource languages (LRLs) with small parallel corpora \rightarrow nonsense!

A Concrete Example

A system that is trained with 5000 sentence pairs on Azerbaijani and English ?
source - Atam balaca boz radiosunda BBC Xəbərlərinə qulaq asırdı.
translation - So l'm going to became a lot of people.
reference - My father was listening to BBC News on his small , gray radio.

Does not convey the correct meaning at all.

Multilingual Training Approaches

- Transfer HRL to LRL (Zoph et al., 2016; Nguyen and Chiang, 2017)
- Joint training with LRL and HRL parallel data (Johnson et al., 2017; Neubig and Hu, 2018)

- Problem: Suboptimal lexical/syntactic sharing.
- Problem: Can't leverage monolingual data.

Data Augmentation

Available Resources
Augmented Data

Data Augmentation 101: Back Translation

TRG -> LRL

Back Translation Idea

- Some degree of error in source data is permissible!

Sennrich, Rico, Barry Haddow, and Alexandra Birch. "Improving neural machine translation models with monolingual data." ACL 2016.

How to Generate Translations

- How to generate translations?
- Beam search (Sennrich et al. 2016)
- Select the highest scoring output
- Higher quality, but lower diversity, potential for data bias
- Sampling (Edunov et al. 2018)
- Randomly sample from back-translation model
- Lower overall quality, but higher diversity
- Sampling has shown to be more effective overall, can be viewed as modeling data distribution (Pham et al. 2021)

Iterative Back-translation

Vu Cong Duy Hoang, Philipp Koehn, Gholamreza Haffari, Trevor Cohn. "Iterative Back-Translation for Neural Machine Translation" WNGT 2018.

Meta Back-translation

(Pham et al. 2021)

- Train back-translation model to improve forward translation model

Meta Back-translation. Hieu Pham, Xinyi Wang, Yiming Yang, Graham Neubig. ICLR 2021.

Back Translation Issues

- Back-translation fails in low-resource languages or domains
- Use other high-resource languages
- Combine with monolingual data (maybe with denoising objectives, covered in following class)
- Perform other varieties of rule-based augmentation

Using HRLs in Augmentation

English -> HRL Augmentation

- Problem: TRG-LRL back-translation might be low quality
- Idea: also backtranslate into HRL

- more sentence pairs
- vocabulary sharing of source-side
- syntactic similarity of source-side
- improves target-side LM

Available Resources + TRG-LRL and TRG-HRL Backtranslation

Augmentation via Pivoting

- Problem: HRL-TRG data might suffer from lack of lexical/syntactic overlap
- Idea: Translate existing HRL-TRG data
- Translate from HRL to LRL

TUR: Çok teşekkür ederim. \longrightarrow AZE: Çox sağ olun.
TRG: Thank you so much. TRG: Thank you so much.

Available Resources + TRG-LRL and TRG-HRL Backtranslation + Pivoting

Back-Translation by Pivoting

- Problem: TRG-HRL back-translated data also suffers from lexical or syntactic mismatch

TRG: Thank you so much.
TUR: Çok teşekkür ederim.

- Idea: TRG-HRL-LRL
- Large amount of English monolingual data can be utilized TRG: Thank you so much.
!
AZE: Çox sağ olun.
TRG: Thank you so much.

Data w/ Various Types of Pivoting

Monolingual Data Copying

Monolingual Data Copying

- Problem: Back-translation may help with structure, but fail at terminology
- Idea: Use monolingual data as-is
- Helps encourage the model to not drop words
- Helps translation of terms that are identical across languages

TRG: Thank you so much. \qquad SRC: Thank you so much. TRG: Thank you so much.

Heuristic Augmentation Strategies

Dictionary-based Augmentation

1. Find rare words in the source sentences
2. Use a language model to predict another word that could appear in that context

Sentence [original / substituted]	Plausible
My sister drives a [car / motorbike]	yes
My uncle sold his [house / motorbike]	yes
Alice waters the [plant / motorbike]	no (semantics)
John bought two [shirts / motorbike]	no (syntax)

3. Replace, and aligned word with translation from dictionary

An Aside: Word Alignment

- Automatically find alignments between source and target words for dictionary learning, analysis, supervised attention etc.
- Traditional symbolic methods: word-based translation models trained using EM algorithm
- GIZA++: https://github.com/moses-smt/giza-pp
- FastAlign: https://github.com/clab/fast align
- Neural methods: use model like multilingual BERT or translation and find words with similar embeddings
- Awesome-Align: https://github.com/neulab/awesome-align

Word-by-word Data Augmentation

- Even simpler, translate sentences word-by-word into target sentence using dictionary

J'ai acheté une nouvelle voiture

- Problem: what about word ordering, syntactic divergence?

Lample, Guillaume, et al. "Unsupervised machine translation using monolingual corpora only." arXiv preprint arXiv:1711.00043 (2017).

Word-by-word
 Augmentation w/ Reordering

- Problem: Source-target word order can differ significantly in methods that use monolingual pre-training
- Solution: Do re-ordering according to grammatical rules, followed by word-by-word translation to create pseudo-parallel data

Reference Japanese: Japanese-ordered English: I var_1 a new car var_2 bought .

English:

Zhou, Chunting, et al. "Handling Syntactic Divergence in Low-resource Machine Translation." arXiv preprint arXiv:1909.00040 (2019).

In-class Assignment

In-class Assignment

- Read one of the cited papers on heuristic data augmentation

Marzieh Fadaee, Arianna Bisazza, Christof Monz. Data Augmentation for Low-Resource Neural Machine Translation. ACL 2017.

Zhou, Chunting, et al. "Handling Syntactic Divergence in Low-resource Machine Translation." EMNLP 2019.

- Try to think of how it would work for one of the languages you're familiar with
- Are there any potential hurdles to applying such a method? Are there any improvements you can think of?

