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What is Machine Translation?

kare wa ringo wo tabeta .

He ate an apple .
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What are
Sequence-to-sequence Models?

Sequence-to-sequence Models

Machine translation:
kare wa ringo wo tabeta → he ate an apple

he ate an apple → PRN VBD DET PP
Dialog:

he ate an apple → good, he needs to slim down
Speech Recognition

 → he ate an apple
And just about anything...:

1010000111101 → 00011010001101

Tagging:
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Why MT as a Representative?
Useful! Global MT Market 

Expected To Reach $983.3 
Million by 2022

Source: The Register

Source: Grand View Research
Imperfect...
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MT and Machine Learning

Big Data! Billions of words for major languages
  … but little for others

Well-defined, Difficult Problem!
Use for algorithms, math, etc.

Algorithms Widely Applicable!
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MT and Linguistics

트레이나 베이커는 좋은 사람이니까요
Baker yinikkayo tray or a good man

Morphology! 이니까요 is a variant of 이다 (to be)

Syntax! should keep subject together

Trina Baker is a good person

Semantics! “Trina” is probably not a man...

… and so much more!
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Class Organization
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Class Format
● Before class:

● Read the assigned material
● Ask questions via web (piazza/email)

● In class:
● Take a small quiz about material
● Discussion, questions, elaboration
● In some cases, code-walk
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Assignments
● Assignment 1: Create a neural 

sequence-to-sequence modeling system. 
Turn in code to run it, and write a report.

● Assignment 2: Create a system for a 
challenge task, to be decided in class 
(maybe low-resource translation).

● Final project: Come up with an 
interesting new idea and test it.
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Assignment Instructions

● Assignment 1: individual
Assignment 2, Project: work in groups of 2-3. 

● Use a shared git repository and commit the code 
that you write, and in reports note who did what part 
of the project.

● All implementations must be basically your own, 
although you can use small code snippets if you cite 
them.

● We recommend implementing in Python (PyTorch, 
DyNet)
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Class Grading

● Short quizzes: 20%
● Assignment 1: 20%
● Assignment 2: 20%
● Final Project: 40%
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Class Plan
1. Introduction (Today): 1 class
2. Language Models: 2 classes
3. Neural MT: 3 classes
4. Evaluation/Analysis: 1 class
5. Linguistically Informed Models,
    Multilingual Learning: 4 classes
6. Advanced Learning Methods: 2 classes
7. Applications: 4 classes
8. Symbolic MT: 3 classes
9. Advanced Topics: 3 classes
10. Final Project Presentations: 2 classes
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Guest Lectures
● Chenhui Chu (Osaka University, 9/19):

Adaptation Methods
● Niki Parmar (Google Brain, 10/15):

Advances in Tansformers
● Marcin Junczys-Dowmunt (Microsoft 

Research, 10/17):
Building State-of-the-art MT Systems
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Models for
Machine Translation



  15

Machine Translation and Sequence-to-sequence Models

Machine Learning for
Machine Translation

kare wa ringo wo tabeta .

He ate an apple .

F =

E =

Probability model: P(E|F;Θ)

Parameters
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Problems in MT
● Modeling: How do we define P(E|F;Θ)?
● Learning: How do we learn Θ?
● Search: Given F, how do we find the 

highest scoring translation?

● Evaluation: Given E' and a human 
reference E, how do we determine how 
good E' is? 

E' = argmax
E
 P(E|F;Θ)
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Neural MT Basics
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Language Models 1: n-gram 
Language Models

E
1
 = he ate an apple

E
2
 = he ate an apples

E
4
 = preliminary orange orange

E
3
 = he insulted an apple

Given multiple candidates,
which is most likely as
an English sentence?

● Definition of language modeling
● Count-based n-gram language models
● Evaluating language models
● Code: n-gram language model
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Language Models 2:
Recurrent LMs

● Neural networks
● Recurrent networks, LSTMs/GRUs
● Training tricks
● Code: RNN-based LM

<s>    <s>     this     is        a      pen    </s>
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Neural MT 1:
Encoder-decoder Models

this     is      a    pen  </s>

kore  wa   pen  desu </s>

kore penwa desu

● Encoder-decoder Models
● Searching for hypotheses
● Mini-batched training
● Code: Encoder-decoder model
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Neural MT 2:
Attentional Models

● Attention in its various varieties
● Unknown word replacement, copying
● Attention improvements, coverage models
● Code: Attentional model

kouen wo
okonai
masu </s>
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Neural MT 3: Self-attention, CNNs

● Self attention
● Convolutional neural networks
● A case study, the transformer
● Code: Self-attentional model

Image: Allamanis et al. (2017)
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Data and Evaluation
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Evaluation
taro ga hanako wo otozureta

Taro visited Hanako the Taro visited the Hanako Hanako visited Taro

Adequate?    ○ 　　　　　　 ○ ☓
Fluent? 　    ○ ☓ ○
Better? B, C C

● Human evaluation
● Automatic evaluation
● Significance tests and meta-evaluation 
● Code: BLEU, and correlation
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Language and 
Linguistic Models
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Syntax/Morphology

● Phrase structure and dependency 
grammar

● Morphology basics
● Universal dependencies
● Code: Running universal dependency parser

CMU de kouen wo okonaimashita

VP
0-5

PP
0-1

VP
2-5

PP
2-3

N
2

P
3

V
4

N
0

P
1

VP
4 okona-i-ma-shita
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Subword Models

● Character models
● Subword models
● Morphology models
● Code: Implement subword splitting

reconstructed

re+  construct+  ed
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Languages of the World

● Introduction to languages around the world
● Linguistic databases, data sources
● Code: Play with large multilingual databases

Image: Black (2019)
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Multi-lingual Learning

● Learning for multiple languages
● Cross-lingual sharing of syntax or lexicon
● Code: Implement a multi-lingual neural 

system

hello
こんにちは

hola
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Advanced Training 
Techniques
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Parameter Optimization

● Loss functions
● Deciding the hypothesis space
● Optimization criteria
● Code: Minimum risk training of MT

LM       TM      RM
-4 -3 -1 -2.2
-5 -4 -1 -2.7
-2 -3 -2 -2.3

Highest ○

0.2*
0.2*
0.2*

0.3*
0.3*
0.3*

0.5*
0.5*
0.5*

○ Taro visited Hanako
 ☓ the Taro visited the Hanako
 ☓ Hanako visited Taro
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Semi- and Unsupervised 
Learning

● Semi-supervised learning
● Back-translation
● Unsupervised learning
● Code: Semi-supervised learning of MT

src

trg

src

trg
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Application Examples
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Applications 1: Paraphrasing, 
Style and Attribute Transfer

● What is style/attribute transfer
● Methods for unsupervised style transfer
● Code: Style transfer model

Image: Xu et al. (2011)
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Applications 2: Dialog

● Models for dialogs
● Ensuring diversity in outputs
● Coherence in generation
● Code: Play with dialog generation

he ate an apple → good, he needs to slim down
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Applications 3: Speech 
Recognition/Synthesis

● Encoding continuous sequences
● Generating continuous sequences
● Code: Speech recognition

this is the song that never ends it just goes on 
and on my friends and if you started singing it 
not knowing what it was you'll just keep 
singing it forever just because this is the song 
that never ends it just goes on and on my 
friends and if... 
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Applications 4: Speech 
Translation

● Considerations in speech-to-text translation
● Multi-task learning with speech recognition
● Code: Speech translation

これは終わることのない歌であり、友よ、ず
っと続きます。これは終わることのない歌で
あり、友よ、ずっと続きます。これは終わる
ことのない歌であり、友よ、ずっと続きま
す。これは終わることのない歌であり、友
よ、ずっと続きます。
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Symbolic Translation 
Models
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Symbolic Methods 1:
Word Alignment

● The IBM/HMM models
● The EM algorithm
● Finding word alignments 
● Implement: Word alignment

太郎 が 花子 を 訪問 した 。

taro visited hanako  .

太郎 が 花子 を 訪問 した 。

taro visited hanako  .
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Symbolic Methods 2:
Monotonic Transduction and FSTs

● Models for sequence transduction
● The Viterbi algorithm
● Weighted finite-state transducers
● Code: A word-by-word translation model 

w/ FSTs

d e c i d e 
↓

u n d e c i d e d
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Symbolic Methods 3:
Phrase-based MT

E = I will give a talk at CMU .

watashi wa
I

CMU de
at CMU

kouen
a talk

wo okonaimasu
will give

.

.

watashi wa
I

CMU de
at CMU

kouen
a talk

wo okonaimasu
will give

.

.

F = watashi wa CMU de kouen wo okonaimasu .

● Phrase extraction and scoring
● Reordering models
● Phrase-based decoding
● Code: Phrase extraction and decoding
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Hybrid Neural-symbolic 
Models

● Symbolic models with neural components
● Neural models with symbolic components
● Code: Implement lexicons in NMT or neural 

feature functions

watashi wa
I

CMU de
at CMU
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Advanced Topics
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Multi-task Learning and 
Transfer

● Advanced multi-task learning
● Learning with other objectives
● Pre-training for seq2seq
● Code: Pre-training for seq2seq

Task 1
Model

Task 2
Model
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Document-level Models

● Methods for capturing context
● Methods for evaluating context 

appropriateness
● Code: Context-sensitive translation

src1

src2

src3

trg1

trg2

trg3
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Robust Translation

● Handling incorrect spelling, grammar, etc.
● Adversarial attacks
● Code: Adversarial attacks

Image: Belinkov and Bisk (2017)
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For Next Class
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Homework

● Read n-gram language modeling materials
● Get software working on your machine to follow along 

the code walks
● By Thursday 1/19: Python and NumPy
● By Tuesday 1/24: PyTorch and DyNet neural net 

libraries (use of PyTorch or DyNet is not mandatory, but 
examples will be in one or the other)
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