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What are agents?

Anything that can be viewed as perceiving its environment through 
sensors and acting upon that environment through actuators.
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How to get started in LLM Agents

• Tasks and Applications

• Training-free Methods for Building Agents

• Evaluation Environment and Benchmark

• Training Methods for Improving Agents



Tasks and Applications For LLM Agents



Why do we want agents?

Imagine if things get done by just talking...



How People Interact with Computers?
• Traditionally …

• What about using natural language?

• Save time, natural, accessible, no need to 
browse, no programming learning curve, etc.
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Natural Language Interfaces to Computers

my_list = [3, 5, 1]

sort in descending order 

sorted(my_list, reverse=True)

Virtual Assistants

Set an alarm at 7 AM

Remind me for the meeting at 5pm

Play Jay Chou’s latest album

?

?

?

Natural Language Programming

Sort my_list in descending order

Copy my_file to home folder

Dump my_dict as a csv file output.csv

?

?

?

Yin et al. 17’



Tool Integrations into Chatbots



Robots

Chen et al., 18’



Robots You are in the middle of a room. Looking 
quickly around you, you see a safe 1, a shelf 4, 
a drawer 2, a bed 1, a drawer 1, a shelf 5, a 
shelf 2, a sidetable 2, a shelf 3, a drawer 3, a 
shelf 1, a sidetable 1, a desk 1, and a 
garbagecan 1.

Your task is to: examine an alarmclock with the 
desklamp.

> go to desk 1
You arrive at loc 8. On the desk 1, you see a 
pen 1, a bowl 1, a alarmclock 2, a pencil 2, a 
pencil 3, a creditcard 3, a book 1, a alarmclock 
3, a keychain 3, and a book 2.

> take alarmclock 2 from desk 1
You pick up the alarmclock 2 from the desk 1.

AlfWorld, Shridhar et al. 21’



Games

MineDojo, Fan et.al 22’



Games

SIMA, DeepMind SIMA Team 24’



Software Development
Devin (https://www.cognition-
labs.com/introducing-devin)



UI Automation



Training-free Methods for Building Agents



How to let LLM become an agent

• Observation

• Text input

• Visual Input

• Audio Input

• Structured Input

• Need for Multimodal LLMs



How to let LLM become an agent

• Planning and reasoning ability
Chain-of-thoughts (CoT)

"Let's think step by step …."
CoT (Wei et al. 22')

Ask LLM:
What should I do next? Let’s think step by step:

First I need to find a pepper shaker … more likely to appear in cabinets (1-6), 
countertops (1-3) … 

After I find pepper shaker 1, next I need to put it on drawer 1 …..



How to let LLM become an agent

• Tool-use ability
• Generate action calls

• Execute the actions in environment

• Put new observation back in prompt

Toolformer (Schick et al. 23’)
ReAct (Yao et al. 23’)

Ask LLM:
What should I do next? Let’s think step by step:
First I need to find a pepper shaker … more likely to appear in cabinets (1-6), 
countertops (1-3) … 
Action: GOTO Cabinet 1
Observation: On cabinet 1, there is a vase 2

…



How to let LLM become an agent

• Planning and reasoning ability
Chain-of-thoughts (CoT)
"Let's think step by step …."

• Tool-use ability
Generate API calls with arguments
Execute the API calls
Get API call results as new 
observation

• What if lots of APIs?



How to let LLM become an agent

• Generate code to perform the task
Reasoning + planning + action unified
PAL (Gao et al. 23')



Evaluation Environment and Benchmark



Evaluation of LLM Agents
• Simplified environments and basic tasks

• Performance is saturating.

1.Stateless, non interactive environment, e.g. 
Mind2Web (Deng et al. 2023) has only dumped 
pages.

2.Checking action sequence accuracy (step-wise, 
surface form only)

3.Simple interactive environment, short horizon, e.g. 
WebShop (Yao et al. 2023), MiniWoB++ (Humphreys 
et al. 2022)







Key to Agent Benchmarks
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Environment:

- Diverse functionality.

- Rich and realistic content.

- Interactive

- Easily Extendable

- Reproducible

Tasks:

- Long horizon tasks

- Enough difficulty 

- Involves multiple websites

Evaluation:

- Reliable metrics

- Encourage final goal rather 

than partial satisfaction.



WebArena Environment Design
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Environment:

- Diverse functionality.

- Rich and realistic content.

- Interactive

- Easily Extendable

- Reproducible

A sandbox Internet:

- Open source, production-ready 

implementation of the websites

- Data populated from real-world 

websites

- Easily distributable – Dockers, 

AWS images, etc.

WebArena (Zhou et al. 23’)



Collecting Realistic Intents

We checked our own web browsing history!

• Information seeking
• “When was the last time I bought shampoo?”

• Site navigation
• “Checkout merge requests assigned to me.”

• Content & configuration operation
• “Post my question, “is a car necessary in NYC”, in a subreddit where I’m likely 

to get an answer.”
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Example Tasks in WebArena
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Outcome/Execution-based Evaluation

Goal: directly validate the correctness of the execution

• “When was the last time I bought shampoo?”

• Directly compare with the annotated answer: Answer is “Dec 15th, 2022”
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Outcome/Execution-based Evaluation
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Observation & Action Space
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Keyboard: type Mouse: click, hover, scroll Browser: New tab, go back



Prompting LLM as Agent

• Few-shot in-context learning: General guideline + two examples
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You are an autonomous intelligent agent tasked with navigating a web 
browser. You will be given web-based tasks. These tasks will be accomplished 
through the use of specific actions you can issue.

You can observe the following information:

…

You can do the following actions:
…

…



Prompting LLM as Agent

• Few-shot in-context learning: General guideline + two examples
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WebArena is Challenging
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• •
• Chain-of-thought prompting provides limited 

benefits. 

• GPT-4 remains significantly behind human 
performance.

• Prompt engineering emphasizes LLMs' 
sensitivity to subtle instruction changes that 
typically don't affect humans.



Failures: Not Knowing How

Not enough domain knowledge to perform the task
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Failures: Not being Accurate

Performing tasks require the generation to be accurate and exact
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Failures: Trivial Errors
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• GPT-4 : 21% examples failed due to repeated 
typing. 

• May be related to hallucination effect, 
generates repeated actions

• Irrelevant content in a webpage hurts!



Failures: (Not So) Trivial Errors
• “Assign this issue to myself.”
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Training Methods for Improving Agents



Learning of LLM Agents

• In-Context Learning – Learning from few-shot exemplars

• Supervised Finetuning – Learning From Experts

• Reinforcement Learning – Learning from Environment



In-context Learning

• LM performs a task just by conditioning on input-output examples, 
without optimizing any parameters.



In-context Learning



Supervised Finetuning

• Collect large amount of expert trajectories (e.g. from human 
annotation)

task_intent, [(obs_1, action_1), …,(obs_N, action_N)] 

• Finetune the LLM with standard cross-entropy loss.



Supervised Finetuning



Supervised Finetuning

• Data hungry

• Cannot learn much from failed trajectories
• a_1, a_2, a_3, … ,a_10 – Success

• a_1, a_2, a_3, … ,a_10 – Fail (Wasted)

• Need human trajectory?
• Data augmentation techniques



Create More Training Data



Data Augmentation
• Continue pre-train on large amount of data automatically mined

• Even noisy, not clear trajectories, provide domain adaptation.

MineDojo, Fan et al. 22’
Don’t Stop Pretraining, Gururangan et al., 20’



Reinforcement Learning

Lots of on-going research in this area!

Recall RLHF: Reinforcement Learning from Human Feedback:

RLHF, Ouyang, et al. 22’



Reinforcement Learning
Compared to RLHF:

Given environment, reward function

(trajectory, reward) pairs without human

Trial and Error (Song et al. 24')

Real Environment w/ 
reward function:

e.g. task completed 
successfully, game score

Reward function



Reinforcement Learning
• Closed loop, interactive environment

• Need good reward functions
oWhat if the task success/fail is not easy to automatically assess?

• Need good initial models
oHas decent basic knowledge ability, sparse rewards

• Scalability
o The environment takes 10 seconds to env.step()

o The reward function takes 100 seconds to get a scalar reward



Reinforcement Learning

• No access to policy model parameters? (e.g. GPT-4)

• We can train with environment reward a second LLM (smaller open 
source models), that generates additional “reflection” prompts.

Retroformer, Yao, et al. 23’
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