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Important Things to Know 
About Tasks

• Task Objective - Why do we do it? 
• Datasets - What data can we use to train/test?
• Evaluation Metrics - How do we evaluate, 

manually and automatically? 
• Models and Methods - How do we solve the 

problem?



Code Generation - 
Overview and Objectives



Code Generation

• Generate executable code as an interface to a 
program 

• Why do it? 
• Accelerates software engineering 
• Enables models to access tools (more in a later 

class)



Inputs and Outputs

Screenshots

Code context

Natural language

Code

Inputs and outputsx → y



Example: Github Copilot

https://youtu.be/xe3oI0rTeaQ 

• A code completion engine within your IDE 
(VSCode)

https://youtu.be/xe3oI0rTeaQ


Example: Claude 3



Why do we do it?
• Making software is important! 

• US software developers make $175B per year 
• Code generation leads to large improvements in 

productivity (Github 2023)



Differences Between code 
and Natural Language

• Code has strict grammar 
• We know the code semantic flow 
• Code is executable 
• Code is created more incrementally 



Code Generation - 
Subtasks and Datasets



HumanEval 
(Chen et al. 2021)

• Examples of usage 
of the Python 
standard library 

• 164 test examples 
• Includes docstring, 

some example 
inputs/outputs, and 
tests



Metric: Pass@K 
(Chen et al. 2021)

• Basic idea: “if we generate K examples, will at least 
one of them pass unit tests” 

• Generating only K will result in high variance, so we 
generate N > K with C correct answers, and then 
calculate expected value



Broader Domains: 
CoNaLa/ODEX 

(Yin et al. 2018, Wang et al. 2022)

• CoNaLa: Broader data scraped 
from StackOverflow

• Wider variety of libraries

• ODEX: Adds execution-based 
evaluation



Metric: BLEU, CodeBLEU
• Issues w/ execution-based evaluation: 

• Requires that code be easily executable (requires unit tests and 
hard in large libraries) 

• Ignores stylistic considerations 
• BLEU: consider text n-gram overlap with human code 
• CodeBLEU: also considers syntax and semantic flow (Ren et al. 2020)



Metric: CodeBERTScore
• It is also possible to use embedding-based methods to compare code 
• CodeBERTScore: BERTScore with CodeBERT trained on lots of code 

(Zhou et al. 2023) 
• Leads to better correlation w/ human judgement and execution 

accuracy



Data Science 
Notebooks: ARCADE 

(Yin et al. 2022)

• Data science notebooks 
(e.g. Jupyter) allow for 
incremental 
implementation 

• Allows evaluation of code 
in context



An Aside: Dataset Leakage
• Leakage of datasets 

is a big problem 
• ARCADE shows that 

novel notebooks are 
harder than online 
notebooks 

• LiveCodeBench 
(Jain et al. 2023) 
shows that some 
code LMs 
outperform on 
HumanEval

Existing New



Dataset: SWEBench 
(Jiminez et al. 2023)

• Issues from GitHub + codebases -> pull request

• Requires long-context understanding, precise 
implementation



Dataset: Design2Code 
(Si et al. 2024)

• Code generation from web sites

• Also proposed Design2Code model



Metric: Visual Similarity of 
Web Site

• Design2Code evaluates by two metrics 
• High-level visual similarity: Similarity between 

visual embeddings of the generated sites 
• Low-level element similarity: Recall of each 

individual element



Code Generation - 
Methods



Basic Method: Code-
generating LM

• Feed the previous code to an LM 
• Virtually all serious LMs are trained on code 

nowadays, and have the ability to complete queries 
• More on specific LMs later!  
• Note: temperature settings are important, set to 

lower values



Code Infilling 
(Fried et al. 2022)

• In code generation, we often want to fill in code 
• Solution: train for infilling



Lots of Available Information 
for Coding!

• Current code context 
• Description of issue to fix 
• Repo context 
• Open tabs



Example: Copilot Prompting 
Strategy (Thakkar 2023)

• Extract prompt given current doc and cursor position 
• Identify relative path and language
• Find most recently accessed 20 files of the same 

language 
• Include: text before, text after, similar files, imported 

files, metadata about language and path 
• TL;DR: lots of prompt engineering to get most useful 

context tin the prompt



Retrieval-based Code 
Generation

• Retrieve similar code from online, and fill it in with a 
retrieval-augmented LM (Hayati et al. 2018) 

• Particularly, in code there is also documentation, 
which can be retrieved (Zhou et al. 2022)



Execution Feedback 
(Shi et al. 2022)

• Code can be executed, 
so we can use this to 
check results!



Fixing Based on Error 
Messages

• e.g. InterCode (Yang et al. 2023)



Code Synthesis from Input/
Output Examples

• It is also possible to “guess” programs from input-
output examples 

• FlashFill induces programs to fill in Excel sheets 
(Gulwani 2011) 

• Terpret compares many different methods for 
synthesis (Gaunt et al. 2016) 

• Generally work with domain-specific languages 
(DSLs) due to problem difficulty



Code Generation - 
Representative Code LMs



Codex 
(Chen et al. 2022)

• Creator: OpenAI 
• Model: Originally continued training from GPT-3  
• Data: lots of data from GitHub 
• Powers (powered?) GitHub Copilot



StarCoder 2 (Lozhkov et al. 2024)

• Creator: Big Science (Hugging Face + Service Now)
• Architecture: Mostly LLaMa-style, w/ 3B, 7B, 15B variants, 

reconfigure RoPE for longer context
• Data: Trained on code (the stack), GitHub issues, pull 

requests, jupyter notebooks, Kaggle notebooks, 
documentation, intermediate representations like LLVM, NL 
datasets 

• Preproc: Add metadata tags (e.g. repo name and file name) 
50% of the time (to allow it to be used at test). Allow for infilling

• Training: Train for 4-5 epochs, 3T+ tokens total



The Stack 2
• Code pre-training dataset w/ license considerations



CodeLLaMA (Roziere et al. 2023)
• Creator: Meta 
• Architecture: Same as LLaMa 2 (7B, 13B, 34B and 70B), 

but trained on longer input contexts (100k) with longer RoPE 
• Data: Trained on deduped code + synthetically created 

instruction data 
• Instruction data created by prompting LLaMa2 for coding 

problems 
• Training: Incremental w/ various datasets



DeepSeek Coder 
(Guo et al. 2024)

• Data: 87% source, 10% English from Markdown 
and StackExchange, 3% Chinese 

• Preproc: Standard preproc, but also include library 
dependencies 

• Architecture: LLaMa-like, 1.3B, 6.7B, and 33B, 
including reconfigured RoPE 

• Training: Overall 2T tokens



Which to Use?
• All have somewhat similar performance, and are 

compared in StarCoder paper 
• DeepSeekCoder seems to be strong on standard 

programming tasks 
• StarCoder seems to be strong on data science 

notebooks



Questions?


