
CS11-711 Advanced NLP

Code Generation
Graham Neubig

Site
https://phontron.com/class/anlp2024/

https://phontron.com/class/anlp2024/

Important Things to Know
About Tasks

• Task Objective - Why do we do it?
• Datasets - What data can we use to train/test?
• Evaluation Metrics - How do we evaluate,

manually and automatically?
• Models and Methods - How do we solve the

problem?

Code Generation -
Overview and Objectives

Code Generation

• Generate executable code as an interface to a
program

• Why do it?
• Accelerates software engineering
• Enables models to access tools (more in a later

class)

Inputs and Outputs

Screenshots

Code context

Natural language

Code

Inputs and outputsx → y

Example: Github Copilot

https://youtu.be/xe3oI0rTeaQ

• A code completion engine within your IDE
(VSCode)

https://youtu.be/xe3oI0rTeaQ

Example: Claude 3

Why do we do it?
• Making software is important!

• US software developers make $175B per year
• Code generation leads to large improvements in

productivity (Github 2023)

Differences Between code
and Natural Language

• Code has strict grammar
• We know the code semantic flow
• Code is executable
• Code is created more incrementally

Code Generation -
Subtasks and Datasets

HumanEval
(Chen et al. 2021)

• Examples of usage
of the Python
standard library

• 164 test examples
• Includes docstring,

some example
inputs/outputs, and
tests

Metric: Pass@K
(Chen et al. 2021)

• Basic idea: “if we generate K examples, will at least
one of them pass unit tests”

• Generating only K will result in high variance, so we
generate N > K with C correct answers, and then
calculate expected value

Broader Domains:
CoNaLa/ODEX

(Yin et al. 2018, Wang et al. 2022)

• CoNaLa: Broader data scraped
from StackOverflow

• Wider variety of libraries

• ODEX: Adds execution-based
evaluation

Metric: BLEU, CodeBLEU
• Issues w/ execution-based evaluation:

• Requires that code be easily executable (requires unit tests and
hard in large libraries)

• Ignores stylistic considerations
• BLEU: consider text n-gram overlap with human code
• CodeBLEU: also considers syntax and semantic flow (Ren et al. 2020)

Metric: CodeBERTScore
• It is also possible to use embedding-based methods to compare code
• CodeBERTScore: BERTScore with CodeBERT trained on lots of code

(Zhou et al. 2023)
• Leads to better correlation w/ human judgement and execution

accuracy

Data Science
Notebooks: ARCADE

(Yin et al. 2022)

• Data science notebooks
(e.g. Jupyter) allow for
incremental
implementation

• Allows evaluation of code
in context

An Aside: Dataset Leakage
• Leakage of datasets

is a big problem
• ARCADE shows that

novel notebooks are
harder than online
notebooks

• LiveCodeBench
(Jain et al. 2023)
shows that some
code LMs
outperform on
HumanEval

Existing New

Dataset: SWEBench
(Jiminez et al. 2023)

• Issues from GitHub + codebases -> pull request

• Requires long-context understanding, precise
implementation

Dataset: Design2Code
(Si et al. 2024)

• Code generation from web sites

• Also proposed Design2Code model

Metric: Visual Similarity of
Web Site

• Design2Code evaluates by two metrics
• High-level visual similarity: Similarity between

visual embeddings of the generated sites
• Low-level element similarity: Recall of each

individual element

Code Generation -
Methods

Basic Method: Code-
generating LM

• Feed the previous code to an LM
• Virtually all serious LMs are trained on code

nowadays, and have the ability to complete queries
• More on specific LMs later!
• Note: temperature settings are important, set to

lower values

Code Infilling
(Fried et al. 2022)

• In code generation, we often want to fill in code
• Solution: train for infilling

Lots of Available Information
for Coding!

• Current code context
• Description of issue to fix
• Repo context
• Open tabs

Example: Copilot Prompting
Strategy (Thakkar 2023)

• Extract prompt given current doc and cursor position
• Identify relative path and language
• Find most recently accessed 20 files of the same

language
• Include: text before, text after, similar files, imported

files, metadata about language and path
• TL;DR: lots of prompt engineering to get most useful

context tin the prompt

Retrieval-based Code
Generation

• Retrieve similar code from online, and fill it in with a
retrieval-augmented LM (Hayati et al. 2018)

• Particularly, in code there is also documentation,
which can be retrieved (Zhou et al. 2022)

Execution Feedback
(Shi et al. 2022)

• Code can be executed,
so we can use this to
check results!

Fixing Based on Error
Messages

• e.g. InterCode (Yang et al. 2023)

Code Synthesis from Input/
Output Examples

• It is also possible to “guess” programs from input-
output examples

• FlashFill induces programs to fill in Excel sheets
(Gulwani 2011)

• Terpret compares many different methods for
synthesis (Gaunt et al. 2016)

• Generally work with domain-specific languages
(DSLs) due to problem difficulty

Code Generation -
Representative Code LMs

Codex
(Chen et al. 2022)

• Creator: OpenAI
• Model: Originally continued training from GPT-3
• Data: lots of data from GitHub
• Powers (powered?) GitHub Copilot

StarCoder 2 (Lozhkov et al. 2024)

• Creator: Big Science (Hugging Face + Service Now)
• Architecture: Mostly LLaMa-style, w/ 3B, 7B, 15B variants,

reconfigure RoPE for longer context
• Data: Trained on code (the stack), GitHub issues, pull

requests, jupyter notebooks, Kaggle notebooks,
documentation, intermediate representations like LLVM, NL
datasets

• Preproc: Add metadata tags (e.g. repo name and file name)
50% of the time (to allow it to be used at test). Allow for infilling

• Training: Train for 4-5 epochs, 3T+ tokens total

The Stack 2
• Code pre-training dataset w/ license considerations

CodeLLaMA (Roziere et al. 2023)
• Creator: Meta
• Architecture: Same as LLaMa 2 (7B, 13B, 34B and 70B),

but trained on longer input contexts (100k) with longer RoPE
• Data: Trained on deduped code + synthetically created

instruction data
• Instruction data created by prompting LLaMa2 for coding

problems
• Training: Incremental w/ various datasets

DeepSeek Coder
(Guo et al. 2024)

• Data: 87% source, 10% English from Markdown
and StackExchange, 3% Chinese

• Preproc: Standard preproc, but also include library
dependencies

• Architecture: LLaMa-like, 1.3B, 6.7B, and 33B,
including reconfigured RoPE

• Training: Overall 2T tokens

Which to Use?
• All have somewhat similar performance, and are

compared in StarCoder paper
• DeepSeekCoder seems to be strong on standard

programming tasks
• StarCoder seems to be strong on data science

notebooks

Questions?

