CS11-711 Advanced NLP

# Model Interpretability $\wp$



Nishant Subramani PhD Student - CMU LTI

Site <u>https://phontron.com/class/anlp2024</u>

## What I want you to take away

**Takeaway 1**: Model Interpretability is important to study!

**Takeaway 2**: Model Interpretability is interesting and something you want to explore more!

## Interpretability (in Al)

**Definition**: The study of understanding the decisions that AI systems make and putting them into easily human-understandable terms.

Why: to use that understanding to iteratively better design systems that are more *performant* and *human-understandable*.



## Historically models are small









## PROBING

### How do we make sense of this huge model?



#### What is a Probe?

**Definition**: A classifier that is specifically trained to predict some property from a pretrained model's representations.

#### Edge Probing (Tenney et al. 2019)

• General method that works to probe different types of information



#### BERT rediscovers the NLP pipeline (Tenney et al. 2019)



POS - part of speech tagging (e.g. this word is a noun)

consts - constituent labeling (e.g. is this span a noun phrase)

deps - dependency labeling (e.g. is span\_one the subject and span\_two the object)

entities - named entity labeling (e.g. this word is a person)

SRL - semantic role labeling (what roles are the spans playing with each other: "Mary (pusher) pushed John (pushee)"

coref - coreference (do span\_one and span\_two refer to the same entity or event)

SPR - semantic proto-role (identifying attributes like awareness so is Mary aware that they are doing the pushing)

relations - relation classification (predicting the real-world relation between two spans given a set of these)

Figure 1: Summary statistics on BERT-large. Columns on left show F1 dev-set scores for the baseline  $(P_{\tau}^{(0)})$ and full-model  $(P_{\tau}^{(L)})$  probes. Dark (blue) are the mixing weight center of gravity (Eq. 2); light (purple) are the expected layer from the cumulative scores (Eq. 4).

## Issues with Probing (Belinkov et al. 2021)

#### • Probe 🔽

- Representation encodes information de
- Probe solved task by itself
- Probe 🗙
  - Representation lacks the information
  - Representation encodes information, but probe is not the right function class
- We want to probe *tasks*, but require supervised data, so instead we probe *datasets*
- Probes designed this way are *correlative* not *causative*

## **Other Probing Works**

Information-Theoretic Probing with Minimum Description Length Elena Voita<sup>1,2</sup> Ivan Titov<sup>1,2</sup> **Amnesic Probing: Behavioral Explanation with Amnesic Counterfactuals** Yanai Elazar<sup>1,2</sup> Shauli Ravfogel<sup>1,2</sup> Alon Jacovi<sup>1</sup> Yoav Goldberg<sup>1,2</sup> Low-Complexity Probing via Finding Subnetworks Steven Cao<sup>1,2</sup> Victor Sanh<sup>2</sup> Alexander M. Rush<sup>2</sup> Pareto Probing: Trading Off Accuracy for Complexity Tiago Pimentel\*, 🔭 Naomi Saphra\*, 🥙 Adina Williams 🐔 Ryan Cotterell 🔊 🖻

## What is Model Interpretability?

**Definition**: The study of understanding the internals of models (e.g. their **weights** and **activations**), putting those insights in human-intelligible terms, using that insight to both patch current models and develop better ones.

## What is Mechanistic Interpretability?

**Definition**: The study of reverse engineering parametric models (often neural networks) from their learned weights into more human-interpretable algorithmic units.

Notable Work

- Analysis of 1 and 2-layer MLPs and Transformers to find circuits (Olah et al. 2021)
- Induction Heads (Olsson et al. 2022)
- Neuron Polysemanticity (Elhage et al. 2021; 2022)

## **MODEL INTERPRETABILITY**



- Weights
  - You can edit them and see what happens
- Activations
  - Look at activations for different inputs
  - Poke them with a stick and see what happens
  - **The technical term:** Intervene on them by adding a vector or some other manipulation

# LOOKING AT WEIGHTS

## **Model Editing**

# **Target**: A concept or specific fact needs to be changedin the model

**Approach:** Changing the weights of the model to edit the model's belief of that fact/concept?

## ROME (Meng et al. 2022)

- Use causal tracing to isolate the causal effect of individual hidden states when processing a fact
- Introduce rank-one model editing (ROME) to edit the model



Figure 4: Editing one MLP layer with ROME. To associate Space Needle with Paris, the ROME method inserts a new  $(k_*, v_*)$  association into layer  $l^*$ , where (a) key  $k_*$  is determined by the subject and (b) value  $v_*$  is optimized to select the object. (c) Hidden state at layer  $l^*$  and token *i* is expanded to produce (d) the key vector  $k_*$  for the subject. (e) To write new value vector  $v_*$  into the layer, (f) we calculate a rank-one update  $\Lambda(C^{-1}k_*)^T$  to cause  $\hat{W}_{proj}^{(l)}k_* = v_*$  while minimizing interference with other memories stored in the layer.

# **LOOKING AT ACTIVATIONS**

#### Steering Vectors (Subramani et al. 2019; 2020; 2022)

Steering Vectors: a fixed-length vector that steers a language model to generate a specific sequence exactly when added to the hidden states of a model at a specific location.

This is our stick that we're poking a language model with.

### **Extracting steering vectors**



| ALGORITHM 1: Extracting $\boldsymbol{z}_{steer}$ for a sentence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <b>Input</b> :x – target sentence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| M – pretrained language model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| $\theta$ – pretrained language model weights                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| $I_L$ - injection location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| $I_T$ – injection timestep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| d – dimension of $\boldsymbol{z}_{steer}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| <b>Output:</b> $z_{steer}$ – extracted candidate steering vector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 1 $z_{steer} \sim xavier_normal(d)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 2 for $i \leftarrow [1, 2,, N]$ do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| $s \mid logits = M_{\theta}.forward(x, \boldsymbol{z}_{steer}, I_L, I_T)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 4 $\mathcal{L} = XENT(logits, x)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 5 $\mathcal{L}.backward()$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 6 $egin{array}{c} egin{array}{c} egin{arra$ |  |
| 7 end                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 8 return $\boldsymbol{z}_{steer}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |

## **Steering vector results**

- Steering vectors exist and we can find them easily for most sequences
- They have interpretable properties
  - Distances in steering vector space reflect semantic similarity
  - Style transfer is possible with simple vector arithmetic
  - Decoding from interpolations in the latent space produces meaningful output

| Steering vectors        |                                |
|-------------------------|--------------------------------|
| Positive Input          | the taste is excellent!        |
| +1.0 $* z_{tonegative}$ | the taste is excellent!        |
| +2.0 $* z_{tonegative}$ | the taste is unpleasant.       |
| Negative Input          | the desserts were very bland.  |
| +1.0 $* z_{topositive}$ | the desserts were very bland . |
| +2.0 $* z_{topositive}$ | the desserts were very tasty.  |

## Inference-time Interventions (Li et al. 2023)

- Use linear probes to find attention heads that correspond to the desired attribute
- Shift attention head activations during inference along directions determined by these probes



Figure 3: A sketch of the computation on the last token of a transformer with inference-time intervention (ITI) highlighted.

## More activation manipulation

• Contrastive steering vectors (Turner et al. 2023; Rimsky et al. 2023)

Figure 1: Schematic of the Activation Addition (ActAdd) method.  $\bigcirc$  = natural language text; • = vectors of activations just before a specified layer. In this example, the output is heavily biased towards discussing weddings, regardless of the topic of the user prompt. (See Algorithm 1 for omitted parameters over intervention strength and location.)



## What can model interpretability give us?

**Outcome 1:** Better understanding of *how* language models work.

**Outcome 2:** Light-weight methods to *control* and *steer* models.

**Outcome 3:** Potential alternatives or complementary methods to further align models to human preferences.

## **Resources: some NLP model interp groups**

- Ellie Pavlick's group at Brown
- David Bau's group at Northeastern
- Hassan Sajjad's group at Dalhousie
- Martin Wattenberg's group at Harvard
- Jacob Andreas's group at MIT
- Yonatan Belinkov's group at Technion
- Mor Geva's group at Tel Aviv University
- Anthropic's Mech Interp team
- Google's PAIR, NLP, and MechInterp teams
- EleutherAl's Interp team

## **Questions?**