
CS11-711 Advanced NLP

Debugging and
Understanding NLP Models

Graham Neubig

Site
https://phontron.com/class/anlp2022/

w/ Some Slides by Danish Pruthi

https://phontron.com/class/anlp2022/

A Typical Situation

• You’ve implemented an NLP system based on
neural networks

• You’ve looked at the code, and it looks OK
• It has low accuracy, or makes incomprehensible

errors
• What do I do?

Three Model Understanding
Dimensions

• Debugging Implementation: Identifying problems
in your implementation (or assumptions)

• Actionable Evaluation: Identifying typical error
cases and understanding how to fix them

• Interpreting Predictions: Examining individual
predictions to dig deeper

Debugging

In Neural Net Models,
Debugging is Paramount!

• Models are often complicated and opaque
• Everything is a hyperparameter (network size,

model variations, batch size/strategy, optimizer/
learning rate)

• Non-convex, stochastic optimization has no
guarantee of decreasing/converging loss

Possible Causes
• Training time problems

• Lack of model capacity
• Poor training algorithm
• Training time bug

• Test time problems
• Disconnect between training and test
• Failure of search algorithm

• Overfitting
• Mismatch between optimized function and eval

Don't debug all at once! Start top and work down.

Debugging at Training Time

Identifying Training Time
Problems

• Look at the loss function calculated on the
training set
• Is the loss function going down?
• Is it going down basically to zero if you run

training long enough (e.g. 20-30 epochs)?
• If not, does it go down to zero if you use very

small datasets?

Is My Model Too Weak?
• Larger models tend to perform better, esp. when pre-trained

(e.g. Raffel et al. 2020)

• Larger models can learn with fewer steps (Kaplan et al. 2020, Li et al. 2020)

Trouble w/ Optimization
• If increasing model size doesn’t help, you may have an

optimization problem
• Check your

• optimizer (an Adam variant is standard)
• learning rate (is the rate you're using standard, are you

using decay?)
• initialization (if from scratch, are you using a reasonable

initialization range)
• minibatching (are you using sufficiently large batches?)

• Pay attention to these details when replicating previous work

Debugging at Test Time

Training/Test Disconnects
• Usually your loss calculation and prediction will be

implemented in different functions
• Especially true for structured prediction models

(e.g. encoder-decoders)
• Like all software engineering: duplicated code is a

source of bugs!
• Also, usually loss calculation is minibatched,

generation not.

Debugging Minibatching
• Debugging mini-batched loss calculation

• Calculate loss with large batch size (e.g. 32)
• Calculate loss for each sentence individually

and sum
• The values should be the same (modulo

numerical precision)
• Create a unit test that tests this!

Debugging Structured
Generation

• Your decoding code should get the same score as
loss calculation

• Test this:
• Call decoding function, to generate an output,

and keep track of its score
• Call loss function on the generated output
• The score of the two functions should be the same

• Create a unit test doing this!

Beam Search
• Instead of picking one high-probability word,

maintain several paths

Debugging Search

• As you make search better, the model score
should get better (almost all the time)

• Search w/ varying beam sizes and make sure you
get a better overall model score with larger sizes

• Create a unit test testing this!

Mismatch b/t Optimized
Function and Evaluation Metric

Loss Function,
Evaluation Metric

• It is very common to optimize for maximum
likelihood for training

• But even though likelihood is getting better,
accuracy can get worse

Example w/ Classification
• Loss and accuracy are de-correlated (see dev)

• Why? Model gets more confident about its mistakes.

A Starker Example
(Koehn and Knowles 2017)

• Better search (=better model score) can result in
worse BLEU score!

• Why? Shorter sentences have higher likelihood, better
search finds them, but BLEU likes correct-length sentences.

Managing Loss Function/Eval
Metric Differences

• Most principled way: use a method like
reinforcement learning

• Easier way: Early stopping w/ evaluation metric

stop here

not here

Actionable Evaluation

Look At Your Data!
• Both bugs and research directions can be found by

looking at your model outputs
• The first word of the sentence is dropped every

generation
> went to the store yesterday
> bought a dog
→ implementation error?

• The model is consistently failing on named entities
→ need a better model of named entities?

Systematic Qualitative Analysis of
Model Errors

• Look at 100-200 errors
• Try to group them into a typology (pre-defined or on the fly)
• Example: Vilar et al. (2006)

Quantitative Analysis
• Measure gains quantitatively. What is the

phenomenon you chose to focus on? Is that
phenomenon getting better?

• You focused on low-frequency words: is
accuracy on low frequency words increasing?

• You focused on syntax: is syntax or word ordering
getting better, are you doing better on long-
distance dependencies?

• You focused on search: how many search errors
are being reduced?

Example: Zeno

https://zenoml.com

https://zenoml.com

Questions?

