CS11-711 Advanced NLP Debugging and Understanding NLP Models

Graham Neubig

Carnegie Mellon University

Language Technologies Institute

Site https://phontron.com/class/anlp2022/

w/ Some Slides by Danish Pruthi

A Typical Situation

- You've implemented an NLP system based on neural networks
- You've looked at the code, and it looks OK
- It has low accuracy, or makes incomprehensible errors
- What do I do?

Three Model Understanding Dimensions

- **Debugging Implementation:** Identifying problems in your implementation (or assumptions)
- Actionable Evaluation: Identifying typical error cases and understanding how to fix them
- Interpreting Predictions: Examining individual predictions to dig deeper

Debugging

In Neural Net Models, Debugging is Paramount!

- Models are often complicated and opaque
- Everything is a hyperparameter (network size, model variations, batch size/strategy, optimizer/ learning rate)
- Non-convex, stochastic optimization has no guarantee of decreasing/converging loss

Possible Causes

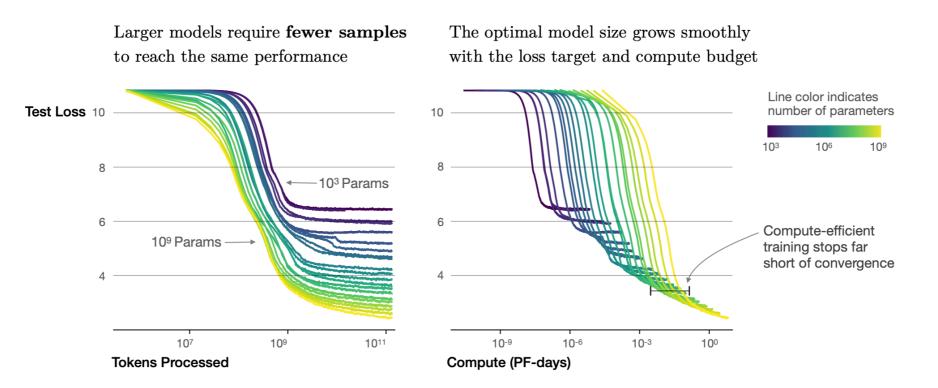
Training time problems

- Lack of model capacity
- Poor training algorithm
- Training time bug
- Test time problems
 - Disconnect between training and test
 - Failure of search algorithm
- Overfitting
- Mismatch between optimized function and eval

Don't debug all at once! Start top and work down.

Debugging at Training Time

Identifying Training Time Problems


- Look at the loss function calculated on the training set
 - Is the loss function going down?
 - Is it going down basically to zero if you run training long enough (e.g. 20-30 epochs)?
 - If not, does it go down to zero if you use very small datasets?

Is My Model Too Weak?

 Larger models tend to perform better, esp. when pre-trained (e.g. Raffel et al. 2020)

Model	GLUE Average	CoLA Matthew's	SST-2 Accuracy	MRPC F1	MRPC Accuracy	STS-B Pearson	STS-B Spearman
Previous best	89.4^{a}	69.2^{b}	97.1^{a}	93.6^{b}	91.5^{b}	92.7^{b}	92.3^{b}
T5-Small	77.4	41.0	91.8	89.7	86.6	85.6	85.0
T5-Base	82.7	51.1	95.2	90.7	87.5	89.4	88.6
T5-Large	86.4	61.2	96.3	92.4	89.9	89.9	89.2
T5-3B	88.5	67.1	97.4	92.5	90.0	90.6	89.8
T5-11B	90.3	71.6	97.5	92.8	90.4	93.1	92 .8

• Larger models can learn with fewer steps (Kaplan et al. 2020, Li et al. 2020)

Trouble w/ Optimization

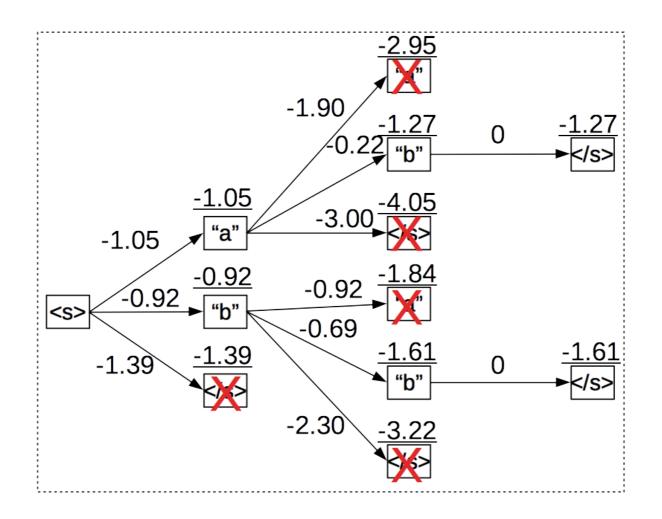
- If increasing model size doesn't help, you may have an optimization problem
- Check your
 - **optimizer** (an Adam variant is standard)
 - learning rate (is the rate you're using standard, are you using decay?)
 - **initialization** (if from scratch, are you using a reasonable initialization range)
 - **minibatching** (are you using sufficiently large batches?)
- Pay attention to these details when replicating previous work

Debugging at Test Time

Training/Test Disconnects

- Usually your loss calculation and prediction will be implemented in different functions
- Especially true for structured prediction models (e.g. encoder-decoders)
- Like all software engineering: duplicated code is a source of bugs!
- Also, usually loss calculation is minibatched, generation not.

Debugging Minibatching


- Debugging mini-batched loss calculation
 - Calculate loss with large batch size (e.g. 32)
 - Calculate loss for each sentence individually and sum
 - The values should be the same (modulo numerical precision)
- Create a unit test that tests this!

Debugging Structured Generation

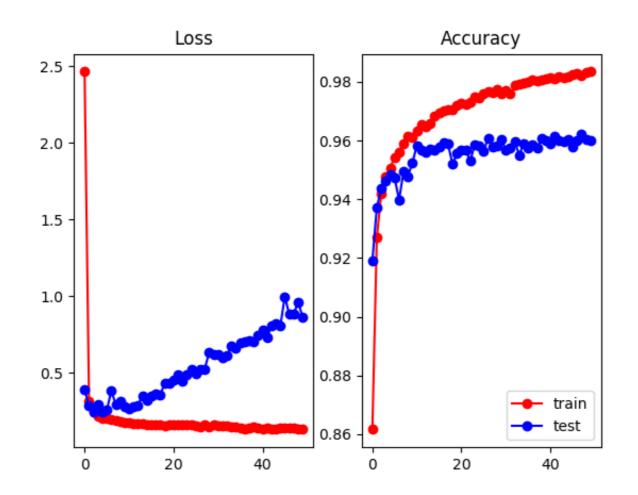
- Your decoding code should get the same score as loss calculation
- Test this:
 - Call decoding function, to generate an output, and keep track of its score
 - Call loss function on the generated output
 - The score of the two functions should be the same
- Create a unit test doing this!

Beam Search

 Instead of picking one high-probability word, maintain several paths

Debugging Search

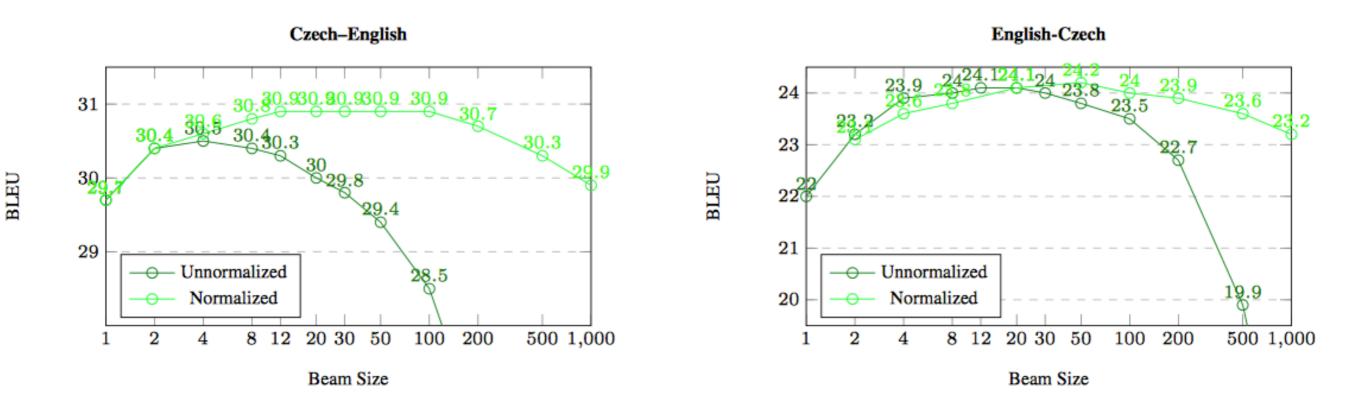
- As you make search better, the **model score** should get better (almost all the time)
- Search w/ varying beam sizes and make sure you get a better overall model score with larger sizes
- Create a unit test testing this!


Mismatch b/t Optimized Function and Evaluation Metric

Loss Function, Evaluation Metric

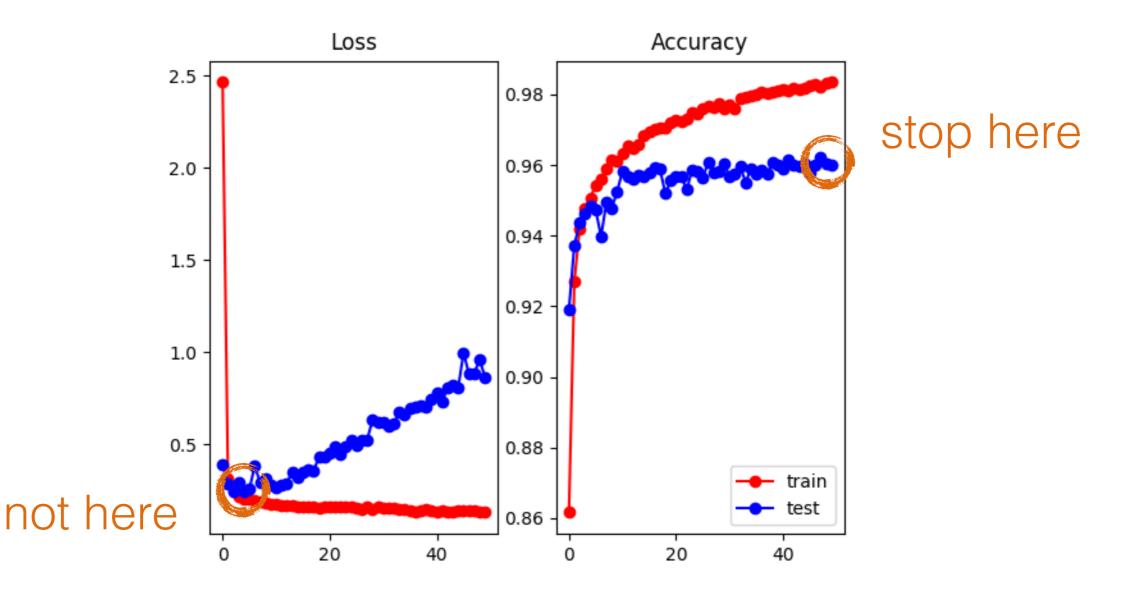
- It is very common to optimize for maximum likelihood for training
- But even though likelihood is getting better, accuracy can get worse

Example w/ Classification


Loss and accuracy are de-correlated (see dev)

• Why? Model gets more confident about its mistakes.

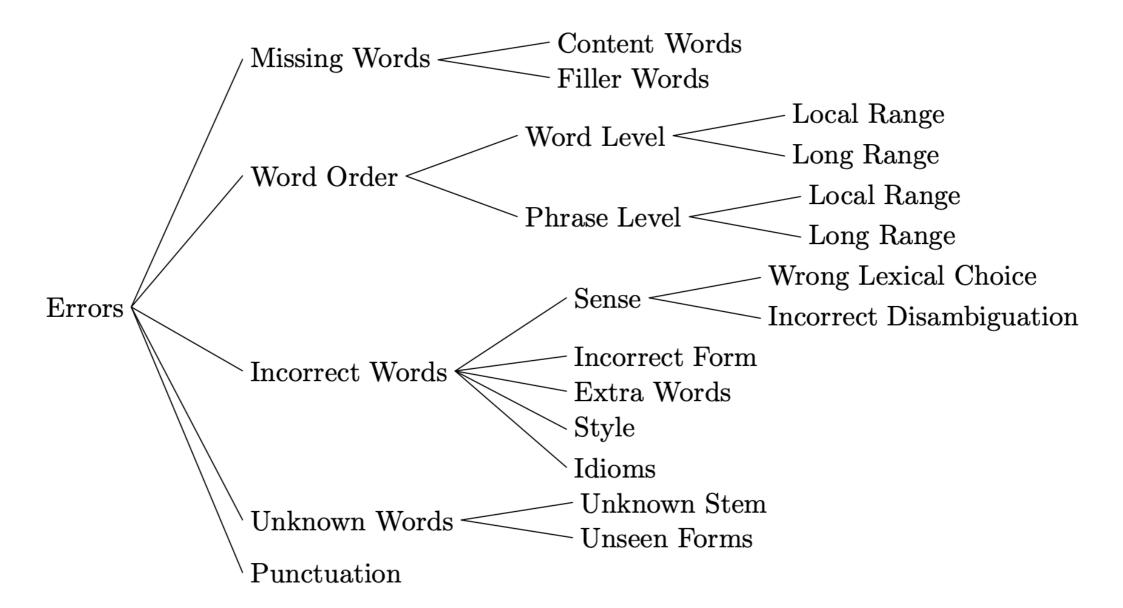
A Starker Example (Koehn and Knowles 2017)


 Better search (=better model score) can result in worse BLEU score!

 Why? Shorter sentences have higher likelihood, better search finds them, but BLEU likes correct-length sentences.

Managing Loss Function/Eval Metric Differences

- Most principled way: use a method like reinforcement learning
- Easier way: Early stopping w/ evaluation metric


Actionable Evaluation

Look At Your Data!

- Both bugs and research directions can be found by looking at your model outputs
- The first word of the sentence is dropped every generation
 - > went to the store yesterday
 - > bought a dog
 - → implementation error?
- The model is consistently failing on named entities
 → need a better model of named entities?

Systematic Qualitative Analysis of Model Errors

- Look at 100-200 errors
- Try to group them into a typology (pre-defined or on the fly)
- Example: Vilar et al. (2006)

Quantitative Analysis

- Measure gains quantitatively. What is the phenomenon you chose to focus on? Is that phenomenon getting better?
 - You focused on low-frequency words: is accuracy on low frequency words increasing?
 - You focused on syntax: is syntax or word ordering getting better, are you doing better on longdistance dependencies?
 - You focused on search: how many search errors are being reduced?

Example: Zeno

0	System	Metric	Filter by selecting slices or interacting with the feature distribution charts.					
	GPT4 five-shot 🗘	chrf 🗘	chrf: 48.09 (20,240 instances)	IST	TABLE			
	Slices (i)							
	All instances	48.09 (20,240)	0					
	> script	6 slices	"We now have 4-month-old mice that are non-diabetic that used to be diabetic," he added.					
	> label length	2 slices	Mums tagad ir 4 mēnešus vecas peles, kas nav diabēta slimnieces, bet kuras agrāk bija diabēta slimnie piebilda.	eces, viņ	š			
	> language 20 slices		output					
	> repetitions 3 slices		"Mums tagad ir četrus mēnešus vecas peles, kuras vairs nav diabētiķes, bet agrāk bija," viņš piebilda.					
	high length ratio	13.89 <i>(94)</i>	1					
	more than 5 repetitions	14.74 (37)	Dr. Ehud Ur, professor of medicine at Dalhousie University in Halifax, Nova Scotia and chair of the clinic scientific division of the Canadian Diabetes Association cautioned that the research is still in its early d					
	Metadata 🕞 id	chrf 0.00 97.44	label Dalhuzī Universitātes, kas atrodas Helifeksā, Jaunskotijā, medicīnas profesors un Kanādas Diabēta aso Klīniskā un zinātniskā departamenta priekšsēdētājs Dr. Ehuds Ūrs brīdināja, ka pētījums vēl ir tikai pašā stadijā.					
	Search Aa * SET		output Dr. Ehud Ur, medicīnas profesors Dalhauzijas Universitātē Halifaxā, Novā Skotijā, un Kanādas Diabēta a	isociācija	as			
	label		klīniskās un zinātniskās nodaļas vadītājs brīdina, ka pētījumi vēl ir sākumstadijā.					
	Search	Aa * SET	2					

https://zenoml.com

Questions?