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A Typical Situation

• You’ve implemented an NLP system based on 
neural networks 

• You’ve looked at the code, and it looks OK 
• It has low accuracy, or makes incomprehensible 

errors 
• What do I do?



Three Model Understanding 
Dimensions

• Debugging Implementation: Identifying problems 
in your implementation (or assumptions) 

• Actionable Evaluation: Identifying typical error 
cases and understanding how to fix them 

• Interpreting Predictions: Examining individual 
predictions to dig deeper



Debugging



In Neural Net Models, 
Debugging is Paramount!

• Models are often complicated and opaque 
• Everything is a hyperparameter (network size, 

model variations, batch size/strategy, optimizer/
learning rate) 

• Non-convex, stochastic optimization has no 
guarantee of decreasing/converging loss



Possible Causes
• Training time problems

• Lack of model capacity 
• Poor training algorithm 
• Training time bug 

• Test time problems
• Disconnect between training and test 
• Failure of search algorithm 

• Overfitting
• Mismatch between optimized function and eval

Don't debug all at once! Start top and work down.



Debugging at Training Time



Identifying Training Time 
Problems

• Look at the loss function calculated on the 
training set 
• Is the loss function going down? 
• Is it going down basically to zero if you run 

training long enough (e.g. 20-30 epochs)? 
• If not, does it go down to zero if you use very 

small datasets?



Is My Model Too Weak?
• Larger models tend to perform better, esp. when pre-trained 

(e.g. Raffel et al. 2020)

• Larger models can learn with fewer steps (Kaplan et al. 2020, Li et al. 2020)



Trouble w/ Optimization
• If increasing model size doesn’t help, you may have an 

optimization problem 
• Check your 

• optimizer (an Adam variant is standard) 
• learning rate (is the rate you're using standard, are you 

using decay?) 
• initialization (if from scratch, are you using a reasonable 

initialization range) 
• minibatching (are you using sufficiently large batches?) 

• Pay attention to these details when replicating previous work



Debugging at Test Time



Training/Test Disconnects
• Usually your loss calculation and prediction will be 

implemented in different functions 
• Especially true for structured prediction models 

(e.g. encoder-decoders) 
• Like all software engineering: duplicated code is a 

source of bugs! 
• Also, usually loss calculation is minibatched, 

generation not.



Debugging Minibatching
• Debugging mini-batched loss calculation 

• Calculate loss with large batch size (e.g. 32) 
• Calculate loss for each sentence individually 

and sum 
• The values should be the same (modulo 

numerical precision) 
• Create a unit test that tests this!



Debugging Structured 
Generation

• Your decoding code should get the same score as 
loss calculation 

• Test this: 
• Call decoding function, to generate an output, 

and keep track of its score 
• Call loss function on the generated output 
• The score of the two functions should be the same 

• Create a unit test doing this!



Beam Search
• Instead of picking one high-probability word, 

maintain several paths



Debugging Search

• As you make search better, the model score 
should get better (almost all the time) 

• Search w/ varying beam sizes and make sure you 
get a better overall model score with larger sizes 

• Create a unit test testing this!



Mismatch b/t Optimized 
Function and Evaluation Metric



Loss Function, 
Evaluation Metric

• It is very common to optimize for maximum 
likelihood for training 

• But even though likelihood is getting better, 
accuracy can get worse



Example w/ Classification
• Loss and accuracy are de-correlated (see dev)

• Why? Model gets more confident about its mistakes.



A Starker Example 
(Koehn and Knowles 2017)

• Better search (=better model score) can result in 
worse BLEU score!

• Why? Shorter sentences have higher likelihood, better 
search finds them, but BLEU likes correct-length sentences.



Managing Loss Function/Eval 
Metric Differences

• Most principled way: use a method like 
reinforcement learning 

• Easier way: Early stopping w/ evaluation metric

stop here

not here



Actionable Evaluation



Look At Your Data!
• Both bugs and research directions can be found by 

looking at your model outputs  
• The first word of the sentence is dropped every 

generation 
> went to the store yesterday 
> bought a dog 
→ implementation error? 

• The model is consistently failing on named entities 
→ need a better model of named entities?



Systematic Qualitative Analysis of 
Model Errors

• Look at 100-200 errors
• Try to group them into a typology (pre-defined or on the fly) 
• Example: Vilar et al. (2006)



Quantitative Analysis
• Measure gains quantitatively. What is the 

phenomenon you chose to focus on? Is that 
phenomenon getting better? 

• You focused on low-frequency words: is 
accuracy on low frequency words increasing? 

• You focused on syntax: is syntax or word ordering 
getting better, are you doing better on long-
distance dependencies? 

• You focused on search: how many search errors 
are being reduced?



Example: Zeno

https://zenoml.com

https://zenoml.com


Questions?


