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Maximum Likelihood 
Training

• Maximum the likelihood of predicting the next word 
in the reference given the previous words

ℓ(Y |X) = − logP (Y |X)

= −
∑

t

logP (yt|X, y<t)



Problem 1: Some Mistakes 
are Worse than Others

• In the end, we want good outputs 
• Some mistaken predictions hurt more than others, 

so we'd like to penalize them appropriately 
• e.g.: 

• Please send this package to Pittsburgh 
• Please send a package to Pittsburgh 
• Please send this package to Tokyo 
• ****ing send this package to Pittsburgh



Problem 2: The “Gold-
standard” in MLE can be Bad
• Corpora are full of outputs that we wouldn’t want a 

language model reproducing! 
• For instance: 

• Toxic comments in reddit 
• Disinformation 
• Translations from old machine translation 

systems



Problem 3: Exposure Bias
• MLE training doesn’t consider the necessity for 

generation — relies on gold-standard context

• Exposure bias: The model is not exposed to mistakes 
during training, and cannot deal with them at test
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Measuring how “Good” an 
Output Is



How to Measure output 
“Goodness"?

• Objective assessment 
• Human subjective annotation 
• Machine prediction of human preferences 
• Use in another system



Objective Assessment
• Have an annotated “correct” answer and match 

against this 
• e.g. in solving math problems, answering objective 

questions

Beth bakes 4, 2 dozen batches of cookies in a week. If 
these cookies are shared amongst 16 people equally, 

how many cookies does each person consume?

Source: GSM8K - Cobbe et al. 2021
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Human Evaluation



Human Feedback: Direct Assessment
• Directly give a score 

 

• Often assign scores based on desirable traits 
• Fluency: how natural is the output 
• Adequacy: in translation, how well does the output 

reflect the input semantics? 
• Factuality: is the output factually entailed 
• Coherence: does the output fit coherently in a 

discourse? 
• etc. etc.

Please send this package to Tokyo 2/10



Human Feedback: Preference Ratings

• Preference rankings 
 
 

• + can be easier and more intuitive than direct 
assessment 

• - can’t tell if all systems are really good or really 
bad 

• To rank multiple systems, can use ELO or TrueSkill 
rankings (Sakaguchi et al. 2014)

Please send this package to Tokyo
Please send a package to Pittsburgh

worse
better



Human Feedback: Error Annotation
• Annotate individual errors within the outputs 

• e.g. Multi-dimensional Quality Metrics (Freitag et al. 2021)

• + Gives more fine-grained feedback 
• + Can be more consistent 
• - Can be very time-consuming

 

Can you send a package to Tokyo

minor/ 
linguistic 

conventions

major/ 
accuracy



An Alternative: 
Automatic Evaluation
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Machine Prediction of 
Human Preferences

• Predict human feedback automatically using a 
model 

• Variously called 
• “automatic evaluation” e.g. in machine translation 
• “reward model” e.g. in chatbots 

• Sometimes uses a “reference” output



Embedding-based Evaluation
• Unsupervised calculation based on embedding similarity 
• e.g. BERTScore (Zhang et al. 2019)



 Regression-based Evaluation

Source

Reference
??

Hypothesis 1

0.5

0.4 
Difference

0.1

Update

• Supervised training of an embedding-based regressor 
• e.g.  COMET (Rei et al. 2020)



QA-based Evaluation
• Ask a language model how good the output is 
• e.g. GEMBA (Kocmi and Federmann 2023)

• Can also ask about 
fine-grained 
mistakes - AutoMQM 
(Fernandes et al. 
2023)



Meta-evaluation of Metrics
?
?

?
?

?
?

?
?

Human

0.8

0.5

0.1

0.6

Automatic

0.7

0.1

0.5

0.4

Pearson = 
0.23 

Kendall = 
0.33 
 
Error = 0.28

• Use datasets like WMT shared tasks (Fabbri et al. 
2020), SumEval (Freitag et al. 2023)



Use in a Downstream 
System

• Intrinsic evaluation: Evaluate the quality of the 
output itself 

• Extrinsic evaluation: Evaluate output quality by its 
utility 

• Example: evaluate LLM summaries through QA 
accuracy (Eyal et al. 2019)



Error and Risk



Error

• Generate an output 
 

• Calculate its "badness" (e.g. 1-eval score) 
 

• We would like to minimize error

Ŷ = argmax
Ỹ

P (Ỹ |X)

error(Y, Ŷ ) = 1− eval(Y, Ŷ )



Problem: Argmax is Non-
differentiable

• The argmax function makes discrete zero-one 
decisions 

• The gradient of this function is zero almost 
everywhere, not-conducive to gradient-based 
training



Risk
• Risk is defined as the expected error

• This is includes the probability in the objective function! 

• Differentiable, but the sum is intractable 

• Minimum risk training minimizes risk, Shen et al. (2015) 
do so for NMT

risk(X, Y, θ) =
∑

Ỹ

P (Ỹ |X; θ)error(Y, Ỹ )



Sampling for Tractability
• Create a small sample of sentences (5-50), and 

calculate risk over that

• Samples can be created using sampling or n-best 
search 

• If sampling: be sure to deduplicate

risk(X, Y, θ) =
∑

Ỹ ∈S

P (Ỹ |X; θ)

Z
error(Y, Ỹ )



Reinforcment Learning Basics: 
Policy Gradient 
(Review of Karpathy 2016)



What is Reinforcement 
Learning?

• Learning where we have an 
• environment X 
• ability to make actions A 
• get a delayed reward R 

• Example of pong: X is our observed image, A is 
up or down, and R is the win/loss at the end of the 
game



Why Reinforcement 
Learning in NLP?

• We may have a typical reinforcement learning 
scenario: e.g. a dialog where we can make 
responses and will get a reward at the end. 

• We may have latent variables (e.g. chains of 
thought), where we decide the latent variable, then 
get a reward based on their configuration. 

• We may have a sequence-level evaluation metric 
such that we cannot optimize without first 
generating a whole sentence.



Supervised MLE
• We are given the correct decisions 

 
 

• In the context of reinforcement learning, this is also 
called “imitation learning,” imitating a teacher 
(although imitation learning is more general)

`super(Y,X) = � logP (Y | X)



Self Training
• Sample or argmax according to the current model

Ŷ ⇠ P (Y | X) Ŷ = argmaxY P (Y | X)or
• Use this sample (or samples) to maximize likelihood

• No correct answer needed! But is this a good idea? 
• One successful alternative: co-training, only use 

sentences where multiple models agree (Blum and 
Mitchell 1998) 

• Another successful alternative: noising the input, to match 
output (He et al. 2020)

`self(X) = � logP (Ŷ | X)



Policy Gradient/REINFORCE
• Add a term that scales the loss by the reward

• Outputs that get a bigger reward will get a higher weight 

• Quiz: Under what conditions is this equal to MLE?

ℓREINFORCE(X, Ŷ ) = −R(Y, Ŷ ) logP (Ŷ |X)



Credit Assignment for 
Rewards

• How do we know which action led to the reward? 
• Best scenario, immediate reward: 

 

• Worst scenario, only at end of roll-out: 
 

• Often assign decaying rewards for future events to take 
into account the time delay between action and reward

a1 a2 a3 a4 a5 a6
0 +1 0 -0.5 +1 +1.5

a1 a2 a3 a4 a5 a6
+3



Stabilizing Reinforcement 
Learning



Problems w/ Reinforcement 
Learning

• Like other sampling-based methods, reinforcement 
learning is unstable 

• It is particularly unstable when using bigger output 
spaces (e.g. words of a vocabulary) 

• A number of strategies can be used to stabilize



Pre-training with MLE 
(Ranzato et al. 2016)

• Start training with MLE, then switch over to RL 
• Works only in the scenarios where we can run MLE 

(not latent variables or standard RL settings)



Regularization to an Existing Model 
(e.g. Schulman et al. 2017)

• Have an existing model, and prevent it from moving 
too far away 

• Method one: KL regularization

• Method two: proximal policy optimization (PPO)
improve reward keep model similar

don’t reward large jumps

ℓregularized =
P (Ŷ |X; θ)

P (Ŷ |X; θold)
R(Y, Ŷ )− βKL [P (·|X; θold), P (·|X; θ)]

rat(Y,X) =
P (Y |X; θ)

P (Y |X; θold)

ℓPPO = min(rat(Ŷ , X)R(Ŷ ), clip(rat(Ŷ , X), 1 + ϵ, 1− ϵ)R(Ŷ ))



Adding a Baseline
• Basic idea: we have expectations about our reward 

for a particular sentence

Reward
0.8
0.3

0.95
Baseline

0.1

B-R
-0.15
0.2

“This is an easy sentence”
“Buffalo Buffalo Buffalo”

• We can instead weight our likelihood by B-R to 
reflect when we did better or worse than expected

`baseline(X) = �(R(Ŷ , Y )�B(Ŷ )) logP (Ŷ | X)

• (Be careful to not backprop through the baseline)



Calculating Baselines
• Choice of a baseline is arbitrary 
• Option 1: predict final reward using linear from 

current state (e.g. Ranzato et al. 2016) 
• Sentence-level: one baseline per sentence 
• Decoder state level: one baseline per output 

action 
• Option 2: use the mean of the rewards in the batch 

as the baseline (e.g. Dayan 1990)



Contrasting Pairwise Examples 
(e.g. Rafailov et al. 2023)

• Can learn directly from pairwise (human) 
preferences, which provides more stability  

• e.g. direct preference optimization (DPO)

ℓDPO = log σ

(

β
P (Yw|X; θ)

P (Yw|X; θold)
− β

P (Yl|X; θ)

P (Yl|X; θold)

)

better outputs worse outputs



Increasing Batch Size
• Because each sample will be high variance, we 

can sample many different examples before 
performing update 

• We can increase the number of examples (roll-outs) 
done before an update to stabilize 

• We can also save previous roll-outs and re-use 
them when we update parameters (experience 
replay, Lin 1993)



Questions?


