
CS11-711 Advanced NLP
(Reinforcement) Learning from

Human Feedback
Graham Neubig

Site
https://phontron.com/class/anlp2024/

https://phontron.com/class/anlp2024/

Maximum Likelihood
Training

• Maximum the likelihood of predicting the next word
in the reference given the previous words

ℓ(Y |X) = − logP (Y |X)

= −
∑

t

logP (yt|X, y<t)

Problem 1: Some Mistakes
are Worse than Others

• In the end, we want good outputs
• Some mistaken predictions hurt more than others,

so we'd like to penalize them appropriately
• e.g.:

• Please send this package to Pittsburgh
• Please send a package to Pittsburgh
• Please send this package to Tokyo
• ****ing send this package to Pittsburgh

Problem 2: The “Gold-
standard” in MLE can be Bad
• Corpora are full of outputs that we wouldn’t want a

language model reproducing!
• For instance:

• Toxic comments in reddit
• Disinformation
• Translations from old machine translation

systems

Problem 3: Exposure Bias
• MLE training doesn’t consider the necessity for

generation — relies on gold-standard context

• Exposure bias: The model is not exposed to mistakes
during training, and cannot deal with them at test

I

classifyclassify

I I

I

classify

I

encoder I

classify

I

I

classify

I

Measuring how “Good” an
Output Is

How to Measure output
“Goodness"?

• Objective assessment
• Human subjective annotation
• Machine prediction of human preferences
• Use in another system

Objective Assessment
• Have an annotated “correct” answer and match

against this
• e.g. in solving math problems, answering objective

questions

Beth bakes 4, 2 dozen batches of cookies in a week. If
these cookies are shared amongst 16 people equally,

how many cookies does each person consume?

Source: GSM8K - Cobbe et al. 2021

??

Source

Hypothesis 1

??

Hypothesis 2

0.8

0.5

Human Evaluation

Human Feedback: Direct Assessment
• Directly give a score

• Often assign scores based on desirable traits
• Fluency: how natural is the output
• Adequacy: in translation, how well does the output

reflect the input semantics?
• Factuality: is the output factually entailed
• Coherence: does the output fit coherently in a

discourse?
• etc. etc.

Please send this package to Tokyo 2/10

Human Feedback: Preference Ratings

• Preference rankings

• + can be easier and more intuitive than direct
assessment

• - can’t tell if all systems are really good or really
bad

• To rank multiple systems, can use ELO or TrueSkill
rankings (Sakaguchi et al. 2014)

Please send this package to Tokyo
Please send a package to Pittsburgh

worse
better

Human Feedback: Error Annotation
• Annotate individual errors within the outputs

• e.g. Multi-dimensional Quality Metrics (Freitag et al. 2021)

• + Gives more fine-grained feedback
• + Can be more consistent
• - Can be very time-consuming

Can you send a package to Tokyo

minor/
linguistic

conventions

major/
accuracy

An Alternative:
Automatic Evaluation

??

Source Reference

Hypothesis 1

??

Hypothesis 2

0.8

0.5

Machine Prediction of
Human Preferences

• Predict human feedback automatically using a
model

• Variously called
• “automatic evaluation” e.g. in machine translation
• “reward model” e.g. in chatbots

• Sometimes uses a “reference” output

Embedding-based Evaluation
• Unsupervised calculation based on embedding similarity
• e.g. BERTScore (Zhang et al. 2019)

 Regression-based Evaluation

Source

Reference
??

Hypothesis 1

0.5

0.4
Difference

0.1

Update

• Supervised training of an embedding-based regressor
• e.g. COMET (Rei et al. 2020)

QA-based Evaluation
• Ask a language model how good the output is
• e.g. GEMBA (Kocmi and Federmann 2023)

• Can also ask about
fine-grained
mistakes - AutoMQM
(Fernandes et al.
2023)

Meta-evaluation of Metrics
?
?

?
?

?
?

?
?

Human

0.8

0.5

0.1

0.6

Automatic

0.7

0.1

0.5

0.4

Pearson =
0.23

Kendall =
0.33

Error = 0.28

• Use datasets like WMT shared tasks (Fabbri et al.
2020), SumEval (Freitag et al. 2023)

Use in a Downstream
System

• Intrinsic evaluation: Evaluate the quality of the
output itself

• Extrinsic evaluation: Evaluate output quality by its
utility

• Example: evaluate LLM summaries through QA
accuracy (Eyal et al. 2019)

Error and Risk

Error

• Generate an output

• Calculate its "badness" (e.g. 1-eval score)

• We would like to minimize error

Ŷ = argmax
Ỹ

P (Ỹ |X)

error(Y, Ŷ) = 1− eval(Y, Ŷ)

Problem: Argmax is Non-
differentiable

• The argmax function makes discrete zero-one
decisions

• The gradient of this function is zero almost
everywhere, not-conducive to gradient-based
training

Risk
• Risk is defined as the expected error

• This is includes the probability in the objective function!

• Differentiable, but the sum is intractable

• Minimum risk training minimizes risk, Shen et al. (2015)
do so for NMT

risk(X, Y, θ) =
∑

Ỹ

P (Ỹ |X; θ)error(Y, Ỹ)

Sampling for Tractability
• Create a small sample of sentences (5-50), and

calculate risk over that

• Samples can be created using sampling or n-best
search

• If sampling: be sure to deduplicate

risk(X, Y, θ) =
∑

Ỹ ∈S

P (Ỹ |X; θ)

Z
error(Y, Ỹ)

Reinforcment Learning Basics:
Policy Gradient
(Review of Karpathy 2016)

What is Reinforcement
Learning?

• Learning where we have an
• environment X
• ability to make actions A
• get a delayed reward R

• Example of pong: X is our observed image, A is
up or down, and R is the win/loss at the end of the
game

Why Reinforcement
Learning in NLP?

• We may have a typical reinforcement learning
scenario: e.g. a dialog where we can make
responses and will get a reward at the end.

• We may have latent variables (e.g. chains of
thought), where we decide the latent variable, then
get a reward based on their configuration.

• We may have a sequence-level evaluation metric
such that we cannot optimize without first
generating a whole sentence.

Supervised MLE
• We are given the correct decisions

• In the context of reinforcement learning, this is also
called “imitation learning,” imitating a teacher
(although imitation learning is more general)

`super(Y,X) = � logP (Y | X)

Self Training
• Sample or argmax according to the current model

Ŷ ⇠ P (Y | X) Ŷ = argmaxY P (Y | X)or
• Use this sample (or samples) to maximize likelihood

• No correct answer needed! But is this a good idea?
• One successful alternative: co-training, only use

sentences where multiple models agree (Blum and
Mitchell 1998)

• Another successful alternative: noising the input, to match
output (He et al. 2020)

`self(X) = � logP (Ŷ | X)

Policy Gradient/REINFORCE
• Add a term that scales the loss by the reward

• Outputs that get a bigger reward will get a higher weight

• Quiz: Under what conditions is this equal to MLE?

ℓREINFORCE(X, Ŷ) = −R(Y, Ŷ) logP (Ŷ |X)

Credit Assignment for
Rewards

• How do we know which action led to the reward?
• Best scenario, immediate reward:

• Worst scenario, only at end of roll-out:

• Often assign decaying rewards for future events to take
into account the time delay between action and reward

a1 a2 a3 a4 a5 a6
0 +1 0 -0.5 +1 +1.5

a1 a2 a3 a4 a5 a6
+3

Stabilizing Reinforcement
Learning

Problems w/ Reinforcement
Learning

• Like other sampling-based methods, reinforcement
learning is unstable

• It is particularly unstable when using bigger output
spaces (e.g. words of a vocabulary)

• A number of strategies can be used to stabilize

Pre-training with MLE
(Ranzato et al. 2016)

• Start training with MLE, then switch over to RL
• Works only in the scenarios where we can run MLE

(not latent variables or standard RL settings)

Regularization to an Existing Model
(e.g. Schulman et al. 2017)

• Have an existing model, and prevent it from moving
too far away

• Method one: KL regularization

• Method two: proximal policy optimization (PPO)
improve reward keep model similar

don’t reward large jumps

ℓregularized =
P (Ŷ |X; θ)

P (Ŷ |X; θold)
R(Y, Ŷ)− βKL [P (·|X; θold), P (·|X; θ)]

rat(Y,X) =
P (Y |X; θ)

P (Y |X; θold)

ℓPPO = min(rat(Ŷ , X)R(Ŷ), clip(rat(Ŷ , X), 1 + ϵ, 1− ϵ)R(Ŷ))

Adding a Baseline
• Basic idea: we have expectations about our reward

for a particular sentence

Reward
0.8
0.3

0.95
Baseline

0.1

B-R
-0.15
0.2

“This is an easy sentence”
“Buffalo Buffalo Buffalo”

• We can instead weight our likelihood by B-R to
reflect when we did better or worse than expected

`baseline(X) = �(R(Ŷ , Y)�B(Ŷ)) logP (Ŷ | X)

• (Be careful to not backprop through the baseline)

Calculating Baselines
• Choice of a baseline is arbitrary
• Option 1: predict final reward using linear from

current state (e.g. Ranzato et al. 2016)
• Sentence-level: one baseline per sentence
• Decoder state level: one baseline per output

action
• Option 2: use the mean of the rewards in the batch

as the baseline (e.g. Dayan 1990)

Contrasting Pairwise Examples
(e.g. Rafailov et al. 2023)

• Can learn directly from pairwise (human)
preferences, which provides more stability

• e.g. direct preference optimization (DPO)

ℓDPO = log σ

(

β
P (Yw|X; θ)

P (Yw|X; θold)
− β

P (Yl|X; θ)

P (Yl|X; θold)

)

better outputs worse outputs

Increasing Batch Size
• Because each sample will be high variance, we

can sample many different examples before
performing update

• We can increase the number of examples (roll-outs)
done before an update to stabilize

• We can also save previous roll-outs and re-use
them when we update parameters (experience
replay, Lin 1993)

Questions?

