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NLP systems are now deployed at scale

Article: TechCrunch (2023)

https://techcrunch.com/2023/11/06/openais-chatgpt-now-has-100-million-weekly-active-users/


We know that training big models is expensive

Llama 2: Open Foundation and Fine-Tuned Chat Models. Touvron  et al. 2023.



But inference is even more expensive

https://www.semianalysis.com/p/the-inference-cost-of-search-disruption

https://www.semianalysis.com/p/the-inference-cost-of-search-disruption


Models aren’t getting much smaller

• The top models for most 
NLP tasks are massive

Llama2 (70B)



Main Question

• The top models for most 
NLP tasks are massive 

• How can we cheaply, efficiently, and equitably deploy 
NLP systems without sacrificing performance?



Answer: Model Compression



1. Quantization 
• keep the model the same but reduce the number of bits 

2. Pruning 
• remove parts of a model while retaining performance 

3. Distillation 
• train a smaller model to imitate the bigger model

Answer: Model Compression



1. Quantization 
1. keep the model the same but give up some precision 

2. Pruning 
1. remove parts of a model while retaining performance 

3. Distillation 
1. train a smaller model to imitate the bigger model

Why is this even possible?

Answer: Model Compression



Overparameterized models are easier to optimize 
(Du and Lee 2018)



Quantization



Post-Training Quantization
• Example: Train a 65B-param model with whatever precision you 

like, then quantize the weights

65B parameters * 4b = 260GB

Model
65B parameters * 2b = 130GB
65B parameters * 1b = 65GB
65B parameters * 1 bit = 8.1GB



Floating point numbers
• Floating point number is stored as (-1)s M 2E 

• Sign bit s 

• Fractional part M = frac 

• Exponential part E = exp - bias

Source: Lecture 4 from 15-213, taught in Summer 2022

https://www.cs.cmu.edu/afs/cs/academic/class/15213-m22/www/lectures/04-float.pdf


Reduced-precision floating point  
types



Int8 quantization
• Absolute Maximum (absmax) quantization:

• This scales inputs to [-127, 127]

[ 0.5, 20, -0.0001, -.01, -0.1 ] 

• Maximum entry is 20 

• round(127/20 * [ 0.5, 20, -0.0001, -.01, -0.1 ]) ->  
[ 3, 127, 0, 0, -1 ]



Extreme Example: Binarized Neural Networks
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Extreme Example: Binarized Neural Networks

I hate this movie </s>

この 映画 が 嫌い

この 映画 が 嫌い </s>
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Extreme Example: Binarized Neural Networks

hate this movie
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Model-Aware Quantization: GOBO 
(Zadeh et al. 2020)

• BERT weights in each layer tend to lie on a Gaussian 

• Only small fraction of weights in each layer are in the tails of the distribution

• Quantize the 99.9% of weights in the body of the disribution into 8 buckets 

• Do not quantize the remaining 0.01%



Model-Aware Quantization: LLM.int8 
(Dettmers et al. 2022)

• Problem with prev approach: quantizing each layer uniformly 
• 95% of params in Transformer LLMs are matrix multiplication

• Quantization overhead slowns down <6.7B models, but enables 
inference of 175B models on single GPUs (in half the time)



Hardware Concerns 
(Shen et al. 2019)

• Not all data types (e.g. “Int3”) are supported by most hardware 
• PyTorch only supports certain data types (e.g. no support for Int4)



Hardware Concerns 
(Shen et al. 2019)

• Not all data types (e.g. “Int3”) are supported by most hardware 
• PyTorch only supports certain data types (e.g. no support for Int4) 
• Some quantization methods require writing bespoke hardware 

accelerators



Quantization-Aware Training



Binarized Neural Networks 
(Courbariaux et al. 2016)

• Weights are -1 or 1 everywhere 
• Activations are also binary 

• Defined stochastically: choose 0 with probability σ(x) and 1 
with probability 1 - σ(x) 

• Backprop is also discretized



Binarized Neural Networks 
(Courbariaux et al. 2016)



Layer-by-Layer Quantization-
Aware Distillation 

(Yao et al. 2022)

• Initialize the quantized network with the same architecture as 
the original 

• Train each layer of the quantized network to mimic the output of 
its full-precision counterpart



Q-LORA 
(Dettmers et al. 2023)

• Further compress memory requirements for training by 
• 4-bit quantization of the model (later class for details) 
• Use of GPU memory paging to prevent OOM

• Can train a 65B model on a 48GB GPU!



Pruning



Pruning
• Remove parameters from the model after training



Pruning vs Quantization
• Quantization: no parameters are changed*, up to k bits of 

precision  
• Pruning: a number of parameters are set to zero, the rest 

are unchanged



Magnitude Pruning 
(Han et al. 2015, See et al. 2016)

• Zero out the X% of parameters with least magnitude 
• A type of unstructured pruning



Lottery Ticket Hypothesis 
(Frankle et al. 2018)

• Training a pruned randomly-initialized 
networks can be better than training the full 
randomly-initialized network



Wanda 
(Sun et al. 2023)



Problem with Unstructured Pruning

• Unstructured sparsity doesn’t necessarily improve 
memory or speed 
• Hardware that supports sparse data structures and 

multiplications are needed 
• This is currently an active area of work but not 

common in commodity hardware



Structured Pruning 
(Xia et al. 2022)

• Remove entire components 
• Remaining components aren’t pruned



Are Sixteen Heads Really Better than One? 
(Michel and Neubig 2019)



Coarse-to-Fine Structured Pruning 
(Xia et al. 2022)

• Transformer layers consist of two components: self-attention and 
feed-forward   

• Idea: learn “masks” that control which components to turn off 
• Coarse masks: entire self-attention or feed-forward components 
• Fine masks: attention heads and hidden state dimensions



Pruning w/ Forward Passes 
(Dery et al. 2024)

• Structured pruning big models requires a lot of memory 
• Can we avoid using gradients? 
• Idea 

1. measure the performance of a model with different 
modules masked 

2. learn the impact of each module mask via regression



Pruning w/ Forward Passes 
(Dery et al. 2024)



Distillation



Distillation
• Train one model (the “student”) to replicate 

the behavior of another model (the “teacher”)



Distillation vs Quantization vs Pruning

• Quantization: no parameters are changed*, up to k bits of 
precision  

• Pruning: a number of parameters are set to zero, the rest 
are unchanged 

• Distillation: ~all parameters are changed 



Weak Supervision 
(Yarowski 1995)

• Pseudo-labels are targets generated for unlabeled text 
• We can train on pseudo-labels as though they are labels 

• This idea is old and used in many ideas 
• Self-training (Yarowski 1995) 
• Co-training (Blum and Mitchell 1998) 
• Meta Pseudo Labels (Pham et al 2020)



Hard vs Soft Targets	  
(Hinton et al 2015)
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Sequence-Level Distillation 
(Kim and Rush 2016)

• Can we extend soft targets to sequences? 
• 2 ways: 

• Word-level distillation: match distribution of words at 
each step with the teacher’s distribution 

• Sequence-level distillation: maximize probability of the 
output generated by the teacher



DistilBERT 
(Sanh et al 2019)

• Uses half the layers and 60% of total parameters 
• Tricks: 

• Initialize DistilBERT with alternating layers from BERT 
• Use both supervised and distillation-based losses 

• Supervised loss doesn’t help much 

• Add cosine similarity of hidden state vectors between teacher 
and student



Born Again Neural Networks 
(Furlanello, Lipton, et al 2018)



Self-Instruct 
(Wang et al 2022)

• Use distillation to train a vanilla LM to follow instructions by 
synthesizing and pseudo-labeling instructions using itself



Prompt2Model 
(Viswanathan et al 2023)

BERT Score: 94.0, ChrF++: 58.9, EM: 61.5

Retrieve 
Pretrained model

Retrieve 
Data

Generate 
Data

Prompt2Model

Input: Prompt (task description + optional examples)

Output: Deployment-ready model

Question: What does LPC stand for? 
Context: The psychoacoustic masking codec was...

Answer: linear predictive coding

Answer questions given context from a 
relevant Wikipedia article.

BERT Score: 94.0, ChrF++: 58.9, EM: 61.5

Retrieve 
Pretrained model

Retrieve 
Data

Generate 
Data

Prompt2Model

Input: Prompt (task description + optional examples)

Output: Deployment-ready model

Question: What does LPC stand for? 
Context: The psychoacoustic masking codec was...

Answer: linear predictive coding

Answer questions given context from a 
relevant Wikipedia article.



A Toolkit for Synthetic Data Generation 
(Patel et al 2024)

Input: Prompt (task description + optional examples)



Questions?

51


