
CS11-711 Advanced NLP

Retrieval and Retrieval-
Augmented Generation

Graham Neubig

Site
https://phontron.com/class/anlp2022/

https://phontron.com/class/anlp2022/

Standard Prompting
• Combine a prompt template together with an input

Please answer this question:

I think Vin Diesel has been a voice actor for several
characters in TV series, do you know what their names are?

Problems
• Accuracy issues:

• Knowledge cutoffs: parameters are usually only
updated to a particular time

• Private data: data stored in private text or data
repositories not suitable for training

• Learning failures: even for data that the model was
trained on, it might not be sufficient to get the right
answer

• Verifiability issues: It is hard to tell if the answer is
correct

Retrieval-augmented Generation
(Chen et al. 2017)

• Retrieve relevant passages efficiently
• Read the passages to answer the query

passage passage passage
passage passage passage

passage passage passage
passage passage passage

passage passage passage
passage passage passage

answer

query

retrieval reading

Example

https://www.behindthevoiceactors.com/Vin-Diesel/

https://www.behindthevoiceactors.com/tv-shows/Big-Mouth/Vin-Diesel/

Retrieval Methods

Retrieval Methods

• Sparse retrieval
• Document-level dense retrieval
• Token-level dense retrieval
• Cross-encoder reranking
• Black-box retrieval (just ask Google/Bing)

Sparse Retrieval
• Express the query and document as a sparse word

frequency vector (usually normalized by length)

• Find the document with the highest inner-product or
cosine similarity in the document collection

q=what is nlp d1 = what is life ?
candy is life !

0.33
0

0.33
0.33

0
…

0.25
0.125

0
0.25

0
…

0
0

0.125
0.125

0
…

0
0

0.125
0
0
…

d2 = nlp is an acronym for
natural language processing

d3 = I like to do
good research on nlp

what
candy

nlp
is

language
…

q*d1 = 0.165 q*d2 = 0.0825 q*d3 = 0.0413

Term Weighting
(See Manning et al. 2009)

• Some terms are more important than others; low-
frequency words are often more important

• Term frequency - in-document frequency (TF-IDF)

• BM25: TF term similar to smoothed count-based LMS

TF(t, d) =
freq(t, d)

∑
t′
freq(t′, d)

IDF(t) = log

(

|D|
∑

d′∈D
δ(freq(t, d′) > 0)

)

TF-IDF(t, d) = TF(t, d)× IDF(t)

BM-25(t, d) = IDF(t) ·
freq(t, d) · (k1 + 1)

freq(t, d) + k1 ·
(

1− b+ b ·
|d|

avgdl

)

Inverted Index
• A data structure that allows for efficient sparse lookup of vectors

d1

2
1
0
2
0
…

0
0
1
1
1
…

0
0
1
0
0
…

d2 d3

what
candy

nlp
is

language

Sparse Vectors
{
 “what”: [1],
 “candy”: [1],
 “nlp”: [2,3],
 “is”: [1,2],
 “language”: [2],
 …
}

Index

• Example software: Apache Lucene

Dense Retrieval

• Encode document/query
and find nearest neighbor

• Can use:
• Out-of-the-box

embeddings
• Learned embeddings

query

Learning Retrieval-oriented
Embeddings

• Select positive and negative documents, train
using a contrastive loss (e.g. hinge loss)

• DPR (Karpukhin et al. 2020): learn encoders based
on a BM25 hard negatives and in-batch negatives.

• Contriever (Izacard et al. 2022): contrastive
learning using two random spans as positive pairs

L(θ, q) =
∑

dpos∈Dpos

∑

dneg∈Dneg

max(0, s(q, dneg; θ)− s(q, dpos; θ))

Approximate Nearest
Neighbor Search

• Methods to retrieve embeddings in sub-linear time

• Software: FAISS, ChromaDB

101100

110

010

011

001

Locality sensitive hashing:
make partitions in continuous
space, use like inverted index

Graph-based search: create
“hubs” and search from there

Cross-encoder Reranking
• Jointly encode both queries and documents using

neural model (Nogueira et al. 2019)

Figure from Khattab et al. (2020)

• Precludes approximate nearest neighbor lookup, so
can only be used on small number of candidates

Bi-encoder Cross-encoder

Token-level Dense Retrieval
• ColBERT (Khattab et al. 2020) use contextual

representations of all query and document tokens
to compute retrieval score.

• Significantly more effective (but more costly) than
single-vector retrieval

Hypothetical Document Embeddings
(Gao et al. 2022)

• Generate a “hypothetical document” for the query using
an LLM, and try to look it up

• Can be easier than trying to match under-specified query

Retriever-Reader Models

Simple: Just Chain
Retrieval+Reading

• Use an out-of-the-box retriever and out-of-the-box reader

passage passage passage
passage passage passage

passage passage passage
passage passage passage

passage passage passage
passage passage passage

answer

query

Google GPT

• Passages are concatenated to the context

Retriever + Generator End-to-end Training (“RAG”)
(Lewis et al. 2020)

• Train the retriever and reader to improve accuracy
• Reader: Maximize generation likelihood given

single retrieved document
• Retriever: Maximize overall likelihood by

optimizing mixture weights over documents

End-to-end Training Equations
(Lewis et al. 2020)

• Generation is a mixture model: pick a document,
generate from the document

PRAG(y|x) ≈
∏

i

∑

z∈top-k(p(·|x))

pη(z|x)pθ(yi|x, z, y1:i−1)

Retriever Generator

• Probability of the retriever is based on embeddings
pη(z|x) ∝ exp(d(z)⊤q(x)) d(z) = encd(z), q(x) = encq(x)

• Adjusts retriever to give higher similarities helpful docs
• Issue: search index becomes stale → can only train q(x)

When do we Retrieve?
• Once, at the beginning of generation

• Default method used by most systems (Lewis et al.
2020)

• Several times during generation, as necessary
• Generate a search token (Schick et al. 2023)
• Search when the model is uncertain (Jiang et al. 2023)

• Every token
• Find similar final embeddings (Khandelwal et al. 2019)
• Approximate attention with nearest neighbors (Bertsch

et al. 2023)

Triggering Retrieval w/ Tokens
• Toolformer

(Schick et al.
2023) generates
tokens that
trigger retrieval
(or other tools)

• Training is done
in an iterative
manner -
generate and
identify
successful
retrievals

Triggering Retrieval w/ Uncertainty
• FLARE (Jiang et al. 2023) tries to generate

content, then does retrieval if LM certainty is low

Token-level Softmax Modification
• kNN-LM (Khandelwal et al. 2019) retrieves similar

examples, and uses the following token from them

Token-level Approximate Attention
• Unlimiformer (Bertsch et al. 2023) notes that attention is

an inner-product and does top-k attention
• First, process input with a sliding window
• Then perform attention using a vector index

25

Long-context Transformers

26

Training Transformers Over
Longer Sequences

• Simply attend to all previous words in the document (e.g.
Voita et al. 2018)

• + Can relatively simply use document-level context
• + Can learn interesting phenomena (e.g. co-reference)

27

• - Computation is quadratic in sequence length!

In RNNs: Pass State + Truncated Backprop

I love this movie

RNN RNN RNN RNN

predict

love

predict

this

predict

movie

predict

.

predict

I

.

It's the best .

RNN RNN RNN RNN

predict

the

predict

best

predict

.

predict

</s>

predict

It's

RNN

No
Backprop

Recurrence is slow, improved by Mamba/RWKV (future class)

Truncated BPTT+Transformer
• Transformer-XL (Dai et al. 2019) attends to fixed

vectors from the previous sentence

29

Standard Transformer Transformer-XL

• Like truncated backprop through time for RNNs; can use
previous states, but not backprop into them

• See also Mistral’s (Jiang et al. 2023) sliding window attention

Sparse Transformers
(Child et al. 2019)

• Add "stride", only attending to every n previous states

30

Compressing Previous
States

• Add a "strided" compression step over previous
states (Rae et al. 2019)

31

Low-rank Approximation
• Calculating the attention matrix is expensive, can it be

predicted with a low-rank matrix?

• Linformer: Add low-rank linear projections into model
(Wang et al. 2020)

• Nystromformer: Approximate using the Nystrom
method, sampling "landmark" points (Xiong et al. 2021)

32

Benchmarks for Long-
context Models

• Long Range Arena:
Composite
benchmark
containing mostly
non-NLP tasks (Tay et
al. 2020)

• SCROLLS:
Benchmark
containing long-
context
summarization, QA,
etc. (Shaham et al.
2022)

Effectively Using Long
Contexts

34

As Context Increases,
Models Miss Relevant Info

• e.g. “lost-in-the-
middle” (Liu et al.
2023) demonstrates
that models pay
less attention to
things in the middle
of context windows

35

Ensuring Use of Relevant Context
• Better retrievers make more relevant context
• Decide whether to include passages (Asai et al. 2021)
• Filter down to parts of retrieved passages (Wang et al. 2023)

Questions?

