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Standard Prompting
• Combine a prompt template together with an input

Please answer this question: 

I think Vin Diesel has been a voice actor for several 
characters in TV series, do you know what their names are?



Problems
• Accuracy issues: 

• Knowledge cutoffs: parameters are usually only 
updated to a particular time 

• Private data: data stored in private text or data 
repositories not suitable for training 

• Learning failures: even for data that the model was 
trained on, it might not be sufficient to get the right 
answer 

• Verifiability issues: It is hard to tell if the answer is 
correct



Retrieval-augmented Generation 
(Chen et al. 2017)

• Retrieve relevant passages efficiently 
• Read the passages to answer the query
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Example

https://www.behindthevoiceactors.com/Vin-Diesel/

https://www.behindthevoiceactors.com/tv-shows/Big-Mouth/Vin-Diesel/



Retrieval Methods



Retrieval Methods

• Sparse retrieval
• Document-level dense retrieval
• Token-level dense retrieval
• Cross-encoder reranking
• Black-box retrieval (just ask Google/Bing)



Sparse Retrieval
• Express the query and document as a sparse word 

frequency vector (usually normalized by length) 

• Find the document with the highest inner-product or 
cosine similarity in the document collection
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Term Weighting 
(See Manning et al. 2009)

• Some terms are more important than others; low-
frequency words are often more important 

• Term frequency - in-document frequency (TF-IDF) 
 
 
 
 
 

• BM25: TF term similar to smoothed count-based LMS

TF(t, d) =
freq(t, d)

∑
t′
freq(t′, d)

IDF(t) = log

(

|D|
∑

d′∈D
δ(freq(t, d′) > 0)

)

TF-IDF(t, d) = TF(t, d)× IDF(t)

BM-25(t, d) = IDF(t) ·
freq(t, d) · (k1 + 1)

freq(t, d) + k1 ·
(

1− b+ b ·
|d|

avgdl

)



Inverted Index
• A data structure that allows for efficient sparse lookup of vectors
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Sparse Vectors
{ 
  “what”: [1], 
  “candy”: [1], 
  “nlp”: [2,3], 
  “is”: [1,2], 
  “language”: [2], 
  … 
}

Index

• Example software: Apache Lucene



Dense Retrieval

• Encode document/query 
and find nearest neighbor 

• Can use: 
• Out-of-the-box 

embeddings 
• Learned embeddings

query



Learning Retrieval-oriented 
Embeddings

• Select positive and negative documents, train 
using a contrastive loss (e.g. hinge loss) 
 
 

• DPR (Karpukhin et al. 2020): learn encoders based 
on a BM25 hard negatives and in-batch negatives. 

• Contriever (Izacard et al. 2022): contrastive 
learning using two random spans as positive pairs

L(θ, q) =
∑

dpos∈Dpos

∑

dneg∈Dneg

max(0, s(q, dneg; θ)− s(q, dpos; θ))



Approximate Nearest 
Neighbor Search

• Methods to retrieve embeddings in sub-linear time

• Software: FAISS, ChromaDB
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Locality sensitive hashing: 
make partitions in continuous 
space, use like inverted index

Graph-based search: create 
“hubs” and search from there



Cross-encoder Reranking
• Jointly encode both queries and documents using 

neural model (Nogueira et al. 2019)

Figure from Khattab et al. (2020) 

• Precludes approximate nearest neighbor lookup, so 
can only be used on small number of candidates

Bi-encoder Cross-encoder



Token-level Dense Retrieval
• ColBERT (Khattab et al. 2020) use contextual 

representations of all query and document tokens 
to compute retrieval score.

• Significantly more effective (but more costly) than 
single-vector retrieval



Hypothetical Document Embeddings 
(Gao et al. 2022)

• Generate a “hypothetical document” for the query using 
an LLM, and try to look it up 

• Can be easier than trying to match under-specified query



Retriever-Reader Models



Simple: Just Chain 
Retrieval+Reading

• Use an out-of-the-box retriever and out-of-the-box reader
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passage passage passage

answer
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Google GPT

• Passages are concatenated to the context



Retriever + Generator End-to-end Training (“RAG”) 
(Lewis et al. 2020)

• Train the retriever and reader to improve accuracy 
• Reader: Maximize generation likelihood given 

single retrieved document 
• Retriever: Maximize overall likelihood by 

optimizing mixture weights over documents 



End-to-end Training Equations 
(Lewis et al. 2020)

• Generation is a mixture model: pick a document, 
generate from the document

PRAG(y|x) ≈
∏

i

∑

z∈top-k(p(·|x))

pη(z|x)pθ(yi|x, z, y1:i−1)

Retriever Generator

• Probability of the retriever is based on embeddings
pη(z|x) ∝ exp(d(z)⊤q(x)) d(z) = encd(z), q(x) = encq(x)

• Adjusts retriever to give higher similarities helpful docs 
• Issue: search index becomes stale → can only train q(x)



When do we Retrieve?
• Once, at the beginning of generation

• Default method used by most systems (Lewis et al. 
2020) 

• Several times during generation, as necessary
• Generate a search token (Schick et al. 2023) 
• Search when the model is uncertain (Jiang et al. 2023) 

• Every token  
• Find similar final embeddings (Khandelwal et al. 2019) 
• Approximate attention with nearest neighbors (Bertsch 

et al. 2023)



Triggering Retrieval w/ Tokens
• Toolformer 

(Schick et al. 
2023) generates 
tokens that 
trigger retrieval 
(or other tools) 

• Training is done 
in an iterative 
manner - 
generate and 
identify 
successful 
retrievals



Triggering Retrieval w/ Uncertainty
• FLARE (Jiang et al. 2023) tries to generate 

content, then does retrieval if LM certainty is low



Token-level Softmax Modification 
• kNN-LM (Khandelwal et al. 2019) retrieves similar 

examples, and uses the following token from them



Token-level Approximate Attention 
• Unlimiformer (Bertsch et al. 2023) notes that attention is 

an inner-product and does top-k attention 
• First, process input with a sliding window 
• Then perform attention using a vector index
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Long-context Transformers
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Training Transformers Over 
Longer Sequences

• Simply attend to all previous words in the document (e.g. 
Voita et al. 2018) 

• + Can relatively simply use document-level context 
• + Can learn interesting phenomena (e.g. co-reference)
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• - Computation is quadratic in sequence length!



In RNNs: Pass State + Truncated Backprop

I love this movie
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Recurrence is slow, improved by Mamba/RWKV (future class)



Truncated BPTT+Transformer
• Transformer-XL (Dai et al. 2019) attends to fixed 

vectors from the previous sentence
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Standard Transformer Transformer-XL

• Like truncated backprop through time for RNNs; can use 
previous states, but not backprop into them 

• See also Mistral’s (Jiang et al. 2023) sliding window attention



Sparse Transformers 
(Child et al. 2019)

• Add "stride", only attending to every n previous states
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Compressing Previous 
States

• Add a "strided" compression step over previous 
states (Rae et al. 2019)
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Low-rank Approximation
• Calculating the attention matrix is expensive, can it be 

predicted with a low-rank matrix? 

• Linformer: Add low-rank linear projections into model 
(Wang et al. 2020) 

• Nystromformer: Approximate using the Nystrom 
method, sampling "landmark" points (Xiong et al. 2021)

32



Benchmarks for Long-
context Models

• Long Range Arena: 
Composite 
benchmark 
containing mostly 
non-NLP tasks (Tay et 
al. 2020) 

• SCROLLS: 
Benchmark 
containing long-
context 
summarization, QA, 
etc. (Shaham et al. 
2022) 



Effectively Using Long 
Contexts

34



As Context Increases, 
Models Miss Relevant Info

• e.g. “lost-in-the-
middle” (Liu et al. 
2023) demonstrates 
that models pay 
less attention to 
things in the middle 
of context windows
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Ensuring Use of Relevant Context
• Better retrievers make more relevant context 
• Decide whether to include passages (Asai et al. 2021) 
• Filter down to parts of retrieved passages (Wang et al. 2023)



Questions?


