
CS11-711 Advanced NLP 

Fine-tuning and 
Instruction Tuning

Graham Neubig

Site
https://phontron.com/class/anlp2024/

https://phontron.com/class/anlp2024/


Plethora of Tasks in NLP
• In NLP, there are a plethora of tasks, each requiring 

different varieties of data 
• Only text: e.g. language modeling 
• Naturally occurring data: e.g. machine 

translation 
• Hand-labeled data: e.g. most analysis tasks 

• And each in many languages, many domains!



Standard Multi-task 
Learning

• Train representations to do well on multiple tasks at 
once

this is an example
LM

Tagging
Encoder

• Often as simple as randomly choosing minibatch 
from one of multiple tasks



Pre-train and Fine-Tune
• First train on one task, then train on another

this is an example LMEncoder

this is an example TaggingEncoder

Initialize



Prompting
• Train on LM task, make predictions in textualized tasks

this is an example LMEncoder

CMU is located in _ PredictEncoder

Freeze



Instruction Tuning
• Pre-train, then fine-tune on many different tasks, 

with an instruction specifying the task

this is an example LMEncoder

this is an example TaggingEncoder

Initialize



Fine-tuning



Full Fine-tuning
• Simply continue training the LM on the output 
• Issue: depending on optimizer, optimization method, can take lots of 

memory! 
• Example: Training 65B parameter model with 16-bit mixed precision 

(Rajbhandari et al. 2019)

65B parameters * 2b = 130GB
65B gradients * 2b = 130GB

Model

65B parameters * 4b = 260GB
65B 1st-order * 4b = 260GB
65B 2nd-order * 4b = 260GB

Optim- 
izer

Activ- 
ations

Forward pass = 10-200GB
Backward pass = 10-200GB

1000-1400GB of GPU memory!

(can be reduced by using bfloat16, other optimizations)



An Aside: GPU Specs
GPU Memory Cost (2/2024) (Cloud) Machines

T40 / K80 24GB $150 Google Colab, AWS p2.*

V100 32GB $2,500 Google Colab

A100 40GB or 80GB $8,000/$16,000 Google Colab, AWS p3.*

H100 80GB $44,000 AWS p4.*

6000 Ada, L40 48GB $8000 N/A

Mac M* Same as CPU $2000 N/A 

• Other hardware options: 
• AMD GPUs 
• Google TPUs 
• Special-purpose Cerebras, AWS Trainium, etc.



Multi-GPU Training
• One solution: throw more hardware at it! 
• Example: DeepSpeed ZeRo (Rajbhandari et al. 2019) partitions 

optimization across different devices

Stage 1: 
optimizer state

Stage 2: 
1+gradients

Stage 3: 
2+parameters



Parameter-efficient Fine-tuning 
(PEFT)

• Don’t tune all of the parameters, but just some! 
• Prompt/prefix tuning (last class) 
• Adapters 
• BitFit 
• LoRa



Reminder: Prefix Tuning 
(Li and Liang 2021)

• "Prompt Tuning" 
optimizes only the 
embedding layer 

• "Prefix Tuning" 
optimizes the 
prefix of all layers



Adapters 
(Houlsby et al. 2019)

• Sandwich in layers in a 
pre-trained model, and 
only tune the adapters 

• These layers only use 
2*model_dim*adapter_
dim parameters



Adapter Fusion 
(Pfeiffer et al. 2020)

• Learn an adapter for various tasks and combine 
them together 

• Like mixture-of-experts (future class)



LoRA 
(Hu et al. 2021)

• Freeze pre-trained 
weights, train low-
rank approximation of 
difference from pre-
trained weights 

• Advantage: after 
training, just add in to 
pre-trained weights — 
no new components!



Q-LORA 
(Dettmers et al. 2023)

• Further compress memory requirements for training by 
• 4-bit quantization of the model (later class for details) 
• Use of GPU memory paging to prevent OOM

• Can train a 65B model on a 48GB GPU!



BitFit 
(Ben Zaken et al. 2021)

• Tune only the bias terms of the model



A Unified View of PEFT 
(He et al. 2021)

• If you look closely at the math, most PEFT methods are 
similar with a few small design differences!

• This understanding can lead to new variants!



Which one to Choose? 
(He et al. 2021)

• Convenience: LoRA and BitFit don’t change model 
architecture 

• Accuracy:
• Simpler tasks (e.g. classification): probably doesn’t 

matter much 
• More complex tasks + small parameter budget: prefix 

tuning seems favorable 
• More complex tasks + larger budget: adapters or mix-

and-match



NLP Tasks



Approaches to Model 
Construction

• Basic Fine Tuning: Build a model that is good at 
performing a single task 

• Instruction Tuning: Build a generalist model that is 
good at many tasks 

• Even if we build a generalist model, we need to have an 
idea about what tasks we want it to be good at!



Context-free Question 
Answering

• Also called “open-book QA” 
• Answer a question without any specific grounding into documents 
• Example dataset: MMLU (Hendrycks et al. 2020)



Contextual Question 
Answering

• Also called “machine reading”, “closed-book QA” 
• Answer a question about a document or document collection 
• Example: Natural Questions (Kwiatkowski et al. 2019) is grounded 

in a Wikipedia document, or the Wikipedia document collection



Code Generation
• Generate code (e.g. Python, SQL, etc.) from a natural 

language command and/or input+output examples 
• Example: HumanEval (Chen et al. 2021) has evaluation 

questions for Python standard library



Summarization
• Single-document: Compress a longer document to shorter 
• Multi-document: Compress multiple documents into one 
• Example: WikiSum compresses the references in a Wikipedia 

article into the first paragraph



Information Extraction
• Entity recognition: identify which words are entities 
• Entity linking: link entities to a knowledge base (e.g. 

Wikipedia) 
• Entity co-reference: find which entities in an input 

correspond to each-other 
• Event recognition/linking/co-reference: identify what 

events occurred 
• Example: OntoNotes (Weischedel et al. 2013) annotates 

many types of information like this on various domains 



Translation
• Translate from one language to another 
• Quality assessment done using similarity to reference 

translation 
• Example: FLORES dataset (Goyal et al. 2021) — 

translations of Wikipedia articles into 101 languages



“General Purpose” 
Benchmarks

• Try to test language abilities across a broad range of tasks 
• Example: BIGBench (Srivatsava et al. 2022)



Instruction Tuning



Basic Instruction Tuning 
(Wei et al. 2021, Sanh et al. 2021)



Learning to In-context Learn 
(Min et al. 2021)

• Convert many-shot datasets (typically used in fine-
tuning) to few-shot in-context learning examples



Instruction Tuning Datasets
• Good reference: FLAN Collection (Longpre et al. 2023)



Instruction Tuned Models
• FLAN-T5: huggingface/google/flan-t5-xxl  

• Encoder-decoder model based on T5 
• 11B parameters 

• LLaMa-2 Chat: huggingface/meta-llama/Llama-2-70b-chat-hf  
• Decoder-only model 
• 70B parameters 

• Mixtral instruct: huggingface/mistralai/Mixtral-8x7B-Instruct-v0.1  
• Decoder-only mixture of experts model 
• 45B parameters 

• (smaller versions also available - Mistral, LLaMa2-7B)

https://huggingface.co/google/flan-t5-xxl
https://huggingface.co/meta-llama/Llama-2-70b-chat-hf
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1


Dataset Generation
• It is possible to automatically generate instruction 

tuning datasets, e.g. self-instruct (Wang et al. 2022)

• Can be used to train chain-of-thought — ORCA (Mukherjee et al. 2023) 
• Can be used to make instructions more complex — Evol-Instruct (Xu et al. 2023)



Dataset Generation
• It is possible to automatically generate instruction 

tuning datasets, e.g. self-instruct (Wang et al. 2022)

• Can be used to train chain-of-thought — ORCA (Mukherjee et al. 2023) 
• Can be used to make instructions more complex — Evol-Instruct (Xu et al. 2023)



Questions?


