
CS11-711 Advanced NLP

Prompting
Graham Neubig

Site
https://phontron.com/class/anlp2024/

Some Slides by Pengfei Liu

https://phontron.com/class/anlp2024/

What is Prompting？
□Encouraging a pre-trained model to make particular predictions by

providing a textual “prompt" specifying the task to be done.

2

Prompting Fundamentals

3

Basic Prompting (Radford et al. 2018)

■ Append a textual string to the beginning of the sequence and complete

4

x = When a dog sees a squirrel, it will usually

be afraid of anything unusual. As an exception, that's when
a squirrel is usually afraid to bite.(GPT-2 Small)

(GPT-2 XL) lick the squirrel. It will also touch its nose to the squirrel on
the tail and nose if it can.

Standard Prompting Workflow

5

■ Fill a prompt template
■ Predict the answer
■ Post-process the answer

Prompt Templates
■ A template where you fill in with an actual input

6

Input: x = “I love this movie”

Template: [x] Overall, it was [z]

Prompting: x’ = “I love this movie. Overall it
was [z]”

Chat Prompts
■ Recently, many models are trained as chatbots
■ Usually inputs are specified in OpenAI messages format

7

messages=[
 {
 "role": “system",
 "content": “Please classify movie reviews as 'positive' or ‘negative'."
 },
 {
 "role": “user",
 "content": "This movie is a banger.”
 },
]

■ Roles:
■ “system”: message provided to the system to influence behavior
■ “user”: message input by the user
■ “assistant”: message output by the system

Chat Prompts Behind the Scenes
■ Behind the scenes, messages are converted to token strings

8

■ Software: See LiteLLM Prompt Templates

LLaMa
[INST]
<<SYS>>
You are an assistant that …
<</SYS>>
[/INST]

[INST]This movie is great.[/INST]

Positive.

Sys.

User

Asst.

Instruction:
You are an assistant that …

Instruction:
This movie is great.

Response:
Positive.

Sys.

User

Asst.

Alpaca

https://github.com/BerriAI/litellm/blob/main/litellm/llms/prompt_templates/factory.py

Answer Prediction
■ Given a prompt, predict the answer

9

Prompting: x’ = “I love this movie. Overall it
was [z]”

Predicting: x’ = “I love this movie. Overall it
was fantastic”

■ Use any inference algorithms, as in generation class

Post-processing
■ Based on the answer, select the actual output
■ For instance:
■ Taking the output as-is
■ Formatting the output for easy visualization
■ Selecting only parts of the output that you want to use
■ Mapping the outputs to other actions

10

Output Formatting

11

Markdown Rendering Code

■ For user-facing applications, format in a pretty way

Output Selection
■ From a longer response, select the information indicative of an answer

12

Predicting: x’ = “I love this movie. Overall it
was a movie that was simply fantastic”

Extraction: fantastic

■ Various methods for extraction
■ Classification: identify keywords
■ Regression/numerical problems: identify numbers
■ Code: pull out code snippets in triple-backticks

Output Mapping
■ Given an answer, map it into a class label or continuous value

13

Extraction: fantastic

Mapping: fantastic => Positive

■ Often map many extracted words onto a single class

Positive

Negative

Interesting
Fantastic

Happy

Boring
1-star

…

Few-shot Prompting /
In-context Learning

14

Few-shot Prompting (Brown+ 2021)

15

■ Provide a few examples of the task together with the instruction

Please classify movie reviews as 'positive' or ‘negative’.

Input: I really don’t like this movie.
Output: negative

Input: This movie is great!
Output: positive

Instruction

Examples

Few-shot Prompting w/ Chat Prompts (OpenAI Cookbook)

16

■ For OpenAI models, add “role”: “system” and a “name”: “example_assistant” etc.

messages=[
 {
 "role": “system",
 "content": "You are an assistant that translates corporate jargon into plain English.”
 },
 {
 “role”: “system”,
 “name":"example_user",
 "content": "New synergies will help drive top-line growth.”
 },
 {
 "role": “system",
 "name": “example_assistant",
 "content": "Things working well together will increase revenue.”
 },
 ...,
 {
 "role": “user",
 "content": "This late pivot means we don't have time to boil the ocean for the client deliverable.”
 },
]

LMs are Sensitive to Small Changes in In-context Examples

17

■ Example ordering (Lu et al. 2021) ■ Label balance (Zhang et al. 2022)

■ Label coverage (Zhang et al. 2022)

But Effects are Sometimes Counter-intuitive (Min et al. 2022)

18

■ Replacing correct labels with random labels sometimes barely hurts accuracy

■ More demonstrations can sometimes hurt accuracy

Chain-of-thought
Prompting

19

Chain of Thought Prompting (Wei et al. 2022)

20

■ Get the model to explain its reasoning before making an answer

■ Provides the model with adaptive computation time

Unsupervised Chain-of-thought Prompting (Kojima et al. 2022)

21

■ Just adding a prompt that encourages the model to explain decisions can
induce reasoning

■ Note: GPT models reason even w/o specific instructions now (probably due to
instruction tuning)

Prompting and Programs

22

Structuring Outputs as Programs can Help (Madaan et al. 2022)

23

■ When predicting a structured
output, using a programming
language instead of natural
language often increases
accuracy

■ Why? Programs are highly-
structured and included in
pre-training data

■ Asking the model to generate
JSON can help formatting
problems

Program-aided Language Models (Gao et al. 2022)

24

■ Using a program to
generate outputs can be
more precise than asking
the LM to do so

■ Especially useful for
numeric questions

■ See ChatGPT code
interpreter, Bard code
execution

■ (More on agents/tools later)

Prompt Engineering

25

Design of Prompts

26

■ Manual
□ Configure a manual template based on the characteristics of the task

■ Automated search
□ Search in discrete space

□ Search in continuous space

Manual Engineering: Format

27

■ Make sure that the format matches that of a trained model (e.g.
chat format)

■ This can have a large effect on models! (Sclar et al. 2023)

Manual Engineering: Instructions

28

■ Instructions should be clear, concise and easy to understand
■ Good examples: https://www.promptingguide.ai/introduction/tips

■ Similar to humans, but (right now) LMs don’t complain when you’re
vague

Less Precise:
Explain the concept prompt engineering. Keep the explanation short, only a few
sentences, and don't be too descriptive.

More Precise:
Use 2-3 sentences to explain the concept of prompt engineering to a high school
student.

https://www.promptingguide.ai/introduction/tips

Methods for Automatic Prompt Engineering

29

■ Prompt paraphrasing
■ Gradient-based discrete prompt search
■ Prompt tuning
■ Prefix tuning

Prompt Paraphrasing

30

• Paraphrase an existing prompt to get other candidates (Jiang et al. 2019)

[X] shares a border with [Y].
[X] has a common border with [Y].

[X] adjoins [Y].
……

• Can be done through iterative paraphrasing (Zhou et al. 2021)

Paraphrasing
Model

Gradient-based Search (Shin et al. 2020)

• Automatically optimize arbitrary prompts based on existing
words

31

Prompt Tuning (Lester et al. 2021)

• Optimize the embeddings of a prompt, instead of the words.

32

Pre-trained
Model

(11B params)

Task A Model
(11B params)

Task B Model
(11B params)

Task C Model
(11B params)

a1
a2

b1

c1
c2

Task A
Batch

Task B
Batch

Task C
Batch

Pre-trained
Model

(11B params)

Model Tuning Prompt Tuning

A

B

C

Mixed-task
Batch

(20K params each)

a1
c1
b1
a2
c2

A
C
B
A
C

Task Prompts

Figure 2: Model tuning requires making a task-
specific copy of the entire pre-trained model for each
downstream task and inference must be performed in
separate batches. Prompt tuning only requires stor-
ing a small task-specific prompt for each task, and
enables mixed-task inference using the original pre-
trained model. With a T5 “XXL” model, each copy
of the tuned model requires 11 billion parameters. By
contrast, our tuned prompts would only require 20,480
parameters per task—a reduction of over five orders of
magnitude—assuming a prompt length of 5 tokens.

low fine-tuned T5-XXL (Raffel et al., 2020) (71.8
vs. 89.3) despite using 16 times more parameters.

Several efforts to automate prompt design have
been recently proposed. Shin et al. (2020) propose
a search algorithm over the discrete space of words,
guided by the downstream application training data.
While this technique outperforms manual prompt
design, there is still a gap relative to model tuning.

Li and Liang (2021) propose “prefix tuning”
and show strong results on generative tasks. This
method freezes the model parameters and back-
propagates the error during tuning to prefix ac-
tivations prepended to each layer in the encoder
stack, including the input layer. Hambardzumyan
et al. (2021) simplify this recipe by restricting the
trainable parameters to the input and output sub-
networks of a masked language model, and show
reasonable results on classifications tasks.

In this paper, we propose prompt tuning as a
further simplification for adapting language models.
We freeze the entire pre-trained model and only al-
low an additional k tunable tokens per downstream
task to be prepended to the input text. This “soft
prompt” is trained end-to-end and can condense
the signal from a full labeled dataset, allowing our
method to outperform few-shot prompts and close
the quality gap with model tuning (Figure 1). At
the same time, since a single pre-trained model is
recycled for all downstream tasks, we retain the ef-
ficient serving benefits of frozen models (Figure 2).

While we developed our method concurrently

with Li and Liang (2021) and Hambardzumyan
et al. (2021), we are the first to show that prompt
tuning alone (with no intermediate-layer prefixes or
task-specific output layers) is sufficient to be com-
petitive with model tuning. Through detailed ex-
periments in sections 2–3, we demonstrate that lan-
guage model capacity is a key ingredient for these
approaches to succeed. As Figure 1 shows, prompt
tuning becomes more competitive with scale.

We compare with similar approaches in Sec-
tion 4. Explicitly separating task-specific param-
eters from the “generalist” parameters needed for
general language-understanding has a range of ad-
ditional benefits. We show in Section 5 that by
capturing the task definition in the prompt while
keeping the generalist parameters fixed, we are able
to achieve better resilience to domain shifts. In Sec-
tion 6, we show that “prompt ensembling”, learn-
ing multiple prompts for the same task, can boost
quality and is more efficient than classic model en-
sembling. Finally, in Section 7, we investigate the
interpretability of our learned soft prompts. In sum,
our key contributions are:

1. Proposing prompt tuning and showing its com-
petitiveness with model tuning in the regime
of large language models.

2. Ablating many design choices, and showing
quality and robustness improve with scale.

3. Showing prompt tuning outperforms model
tuning on domain shift problems.

4. Proposing “prompt ensembling” and showing
its effectiveness.

2 Prompt Tuning

Following the “text-to-text” approach of T5 (Raffel
et al., 2020), we cast all tasks as text generation.
Instead of modeling classification as the probabil-
ity of an output class given some input, Pr(y|X),
where X is a series of tokens and y is a single class
label, we now model it as conditional generation,
where Y is a sequence of tokens that represent a
class label. T5 models classification as Pr✓(Y |X),
parameterized by the weights, ✓, of the transform-
ers (Vaswani et al., 2017) that make up its encoder
and decoder.

Prompting is the approach of adding extra in-
formation for the model to condition on during its
generation of Y . Normally, prompting is done
by prepending a series of tokens, P , to the in-
put X , such that the model maximizes the likeli-
hood of the correct Y , Pr✓(Y |[P ;X]), while keep-

Prefix Tuning (Li and Liang 2021)

• "Prompt Tuning"
optimizes only the
embedding layer

• "Prefix Tuning"
optimizes the prefix of
all layers

33

Prompting and Fine Tuning

34

Connection to Other Training Methods
• We will be covering LoRA, Adapters, and other parameter-

efficient training methods in a future class
• But prefix tuning is actually very similar, with a few design

differences! (He et al. 2021)

35

natural language prompts (Radford+ 2017)

discrete prompt search (Shin+ 2020)

continuous prompts (Lester+ 2021)

A Taxonomy of Prompting Methods

multi-layer continuous prompts (Li+ 2021)

parameter-efficient training (Houlsby+ 2019)

all training methods

Human
Interpretable

Not
Human
Interpretable

prompt paraphrasing (Jiang+ 2019)

Prompting as a Prior
• Prompts are a human-interpretable method for providing a prior

over the parameters of the model!
• This can be used in place of fine-tuning, or combined with fine-

tuning (e.g. Schick and Schütze 2020)
• More in future classes!

37

Questions?

