CS11-711 Advanced NLP Prompting

Site https://phontron.com/class/anlp2024/

- Graham Neubig
- **Carnegie Mellon University**
- Language Technologies Institute

Some Slides by Pengfei Liu

What is **Prompting**?

providing a textual "prompt" specifying the task to be done.

Encouraging a pre-trained model to make particular predictions by

Prompting Fundamentals

Basic Prompting (Radford et al. 2018)

Append a textual string to the beginning of the sequence and complete

x = When a dog sees a squirrel, it will usually

(GPT-2 Small)

be afraid of anything unusual. As an exception, that's when a squirrel is usually afraid to bite.

lick the squirrel. It will also touch its nose to the squirrel on the tail and nose if it can.

(GPT-2 XL)

Standard Prompting Workflow

- Fill a prompt template
- Predict the answer
- Post-process the answer

Prompt Templates

A template where you fill in with an actual input

was [z]"

Chat Prompts

- Recently, many models are trained as chatbots
- Usually inputs are specified in OpenAI messages format

```
messages=[
    "role": "system",
    "content": "Please classify movie reviews as 'positive' or 'negative'."
  },
    "role": "user",
    "content": "This movie is a banger."
  },
```

- Roles:

 - "user": message input by the user
 - "assistant": message output by the system

"system": message provided to the system to influence behavior

Chat Prompts Behind the Scenes

Software: See LiteLLM Prompt Templates

Alpaca

Sys. ### Instruction: You are an assistant that ... User ### Instruction: This movie is great. Asst. ### Response: Positive.

Answer Prediction

Given a prompt, predict the answer

was [z]"

was fantastic"

Use any inference algorithms, as in generation class

Prompting: x' = "I love this movie. Overall it

Predicting: x' = "I love this movie. Overall it

Post-processing

- Based on the answer, select the actual output
- For instance:
 - Taking the output as-is
 - Formatting the output for easy visualization
 - Selecting only parts of the output that you want to use
 - Mapping the outputs to other actions

Output Formatting

For user-facing applications, format in a pretty way Markdown Rendering Code

You

Please write a table with the last 5 presidents and their birthdates.

ChatGPT

Here is a table with the last 5 U.S. Presidents and their birthdates:

President	Birthdate
Joe Biden	November 20, 1942
Donald Trump	June 14, 1946
Barack Obama	August 4, 1961
George W. Bush	July 6, 1946
Bill Clinton	August 19, 1946

Output that in JSON format.

ChatGPT

Here is the information in JSON format:

11

Output Selection

Extraction: fantastic

- Various methods for extraction
 - Classification: identify keywords
 - Regression/numerical problems: identify numbers
 - Code: pull out code snippets in triple-backticks

From a longer response, select the information indicative of an answer

Predicting: x' = "I love this movie. Overall it

was a movie that was simply fantastic"

12

Output Mapping

Extraction: fantastic **Mapping:** fantastic => **Positive**

Often map many extracted words onto a single class

Positive Negative

Given an answer, map it into a class label or continuous value

Few-shot Prompting / In-context Learning

14

Few-shot Prompting (Brown+ 2021)

Input: I really don't like this movie. Output: negative

Input: This movie is great! Output: positive

Examples

Provide a few examples of the task together with the instruction

- nstruction Please classify movie reviews as 'positive' or 'negative'.

Few-shot Prompting w/ Chat Prompts (OpenAl Cookbook)

```
messages=[
    "role": "system",
    "content": "You are an assistant that translates corporate jargon into plain English."
    "role": "system",
    "name": "example user",
    "content": "New synergies will help drive top-line growth."
  },
    "role": "system",
    "name": "example assistant",
    "content": "Things working well together will increase revenue."
  • • • /
    "role": "user",
 },
```

For OpenAI models, add "role": "system" and a "name": "example_assistant" etc.

"content": "This late pivot means we don't have time to boil the ocean for the client deliverable."

LMs are Sensitive to Small Changes in In-context Examples

Example ordering (Lu et al. 2021)
 Label balance (Zhang et al. 2022)

Figure 1: Four-shot performance for 24 different sample orders across different sizes of GPT-family models (GPT-2 and GPT-3) for the SST-2 and Subj datasets.

Label coverage (Zhang et al. 2022)

But Effects are Sometimes Counter-intuitive (Min et al. 2022)

More demonstrations can sometimes hurt accuracy

Replacing correct labels with random labels sometimes barely hurts accuracy

18

Chain-of-thought Prompting

Chain of Thought Prompting (Wei et al. 2022)

Get the model to explain its reasoning before making an answer

Standard Prompting

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Figure 1: Chain-of-thought prompting enables large language models to tackle complex arithmetic, commonsense, and symbolic reasoning tasks. Chain-of-thought reasoning processes are highlighted.

Provides the model with adaptive computation time

20 to make lunch. So they had 23 - 20 = 3. They bought 6 more apples, so they have 3 + 6 = 9. The answer is 9. 🗸

Unsupervised Chain-of-thought Prompting (Kojima et al. 2022)

 Just adding a prompt that encourage induce reasoning

(a) Few-shot

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: The answer is 11.

Q: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the golf balls are blue. How many blue golf balls are there?

A:

(Output) The answer is 8. X

(c) Zero-shot

Q: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the golf balls are blue. How many blue golf balls are there?

A: The answer (arabic numerals) is

(Output) 8 🗙

 Note: GPT models reason even w/o specific instructions now (probably due to instruction tuning)

Just adding a prompt that encourages the model to explain decisions can

(b) Few-shot-CoT

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?
A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11.
Q: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the golf balls are blue. How many blue golf balls are there?
A:

(Output) The juggler can juggle 16 balls. Half of the balls are golf balls. So there are 16 / 2 = 8 golf balls. Half of the golf balls are blue. So there are 8 / 2 = 4 blue golf balls. The answer is 4.

(d) Zero-shot-CoT (Ours)

Q: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the golf balls are blue. How many blue golf balls are there?

A: Let's think step by step.

(Output) There are 16 balls in total. Half of the balls are golf balls. That means that there are 8 golf balls. Half of the golf balls are blue. That means that there are 4 blue golf balls.

21

Prompting and Programs

Structuring Outputs as Programs can Help (Madaan et al. 2022)

- When predicting a structured output, using a programming language instead of natural language often increases accuracy
- Why? Programs are highlystructured and included in pre-training data
- Asking the model to generate JSON can help formatting problems

(a) The script G

```
digraph G {
  begin -> take_pies_out_to_cool;
  begin -> open_cabinet_drawer;
  take_pies_out_to_cool ->
     take_out_several_plates;
  open_cabinet_drawer ->
     take_out_several_plates;
  take_out_several_plates ->
     begin_putting_pies_on_plates;
  begin_putting_pies_on_plate;
  fill_pies_onto_plates_evenly ->
     serve_potpies_on_plate;
  serve_potpies_on_plate -> end;
}
```

```
class Tree:
goal = "serve the potpies on a plate"
def __init__(self):
    # nodes
    take_pies_out_to_cool = Node()
    open_cabinet_drawer = Node()
    take_out_several_plates = Node()
    ...
    # edges
    take_pies_out_to_cool.children =
       [take_out_several_plates]
    open_cabinet_drawer.children =
       [take_out_several_plates]
    ...
```

(b) \mathcal{G} converted to Python code \mathcal{G}_c using our approach

```
l
(take_pies_out_to_cool,
    take_out_several_plates),
(open_cabinet_drawer,
    take_out_several_plates),
(take_out_several_plates,
    begin_putting_pies_on_plates),
(take_out_several_plates,
    fill_pies_onto_plates_evenly),
(begin_putting_pies_on_plates,
    serve_potpies_on_plate),
(fill_pies_onto_plates_evenly,
    serve_potpies_on_plate),
(serve_potpies_on_plate, end)
1
```

(c) Straightforward encodings of the graph using the "DOT" (d) Text format, or as a list of edges (node pairs)

),),

Program-aided Language Models (Gao et al. 2022)

- Using a program to generate outputs can be more precise than asking the LM to do so
- Especially useful for numeric questions
- See ChatGPT code interpreter, Bard code execution
- (More on agents/tools later)

Chain-of-Thought (Wei et al., 2022)

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 tennis balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The bakers at the Beverly Hills Bakery baked 200 loaves of bread on Monday morning. They sold 93 loaves in the morning and 39 loaves in the afternoon. A grocery store returned 6 unsold loaves. How many loaves of bread did they have left?

Model Output

Input

A: The bakers started with 200 loaves. They sold 93 in the morning and 39 in the afternoon. So they sold 93 + 39 = 132 loaves. The grocery store returned 6 loaves. So they had 200 - 132 - 6 = 62 loaves left. The answer is 62.

×

Program-aided Language models (this work)

 Input

 Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

 A: Roger started with 5 tennis balls.

 tennis_balls = 5

 2 cans of 3 tennis balls each is

 bought_balls = 2 * 3

 tennis balls. The answer is

 answer = tennis balls + bought_balls

Q: The bakers at the Beverly Hills Bakery baked 200 loaves of bread on Monday morning. They sold 93 loaves in the morning and 39 loaves in the afternoon. A grocery store returned 6 unsold loaves. How many loaves of bread did they have left?

Model Output

```
A: The bakers started with 200 loaves
loaves_baked = 200
They sold 93 in the morning and 39 in the afternoon
loaves_sold_morning = 93
loaves_sold_afternoon = 39
The grocery store returned 6 loaves.
loaves_returned = 6
The answer is
answer = loaves_baked - loaves_sold_morning
- loaves_sold_afternoon + loaves_returned
>>> print(answer)
74
```


Prompt Engineering

Design of Prompts

- Manual
 - Configure a manual template based on the characteristics of the task
- Automated search
 - Search in discrete space
 - Search in continuous space

Manual Engineering: Format

- chat format)
- This can have a large effect on models! (Sclar et al. 2023)

Make sure that the format matches that of a trained model (e.g.

27

Manual Engineering: Instructions

- Instructions should be clear, concise and easy to understand

Less Precise:

Explain the concept prompt engineering. Keep the explanation short, only a few sentences, and don't be too descriptive.

More Precise:

Use 2-3 sentences to explain the concept of prompt engineering to a high school student.

vague

Good examples: <u>https://www.promptingguide.ai/introduction/tips</u>

Similar to humans, but (right now) LMs don't complain when you're

Methods for Automatic Prompt Engineering

- Prompt paraphrasing
- Gradient-based discrete prompt search
- Prompt tuning
- Prefix tuning

Prompt Paraphrasing

• Paraphrase an existing prompt to get other candidates (Jiang et al. 2019)

[X] shares a border with [Y].

[X] has a common border with [Y]. [X] adjoins [Y].

.

• Can be done through iterative paraphrasing (Zhou et al. 2021)

Gradient-based Search (Shin et al. 2020)

Automatically optimize arbitrary prompts based on existing

Original Input x_{inp}		AU
a real joy.		a re
	_	
Trigger Tokens x_{trig}		
atmosphere, alot, dialogue, Clone		
	1	
Template $\lambda(\boldsymbol{x}_{inp}, \boldsymbol{x}_{trig})$		
sentence[T][T][T][T][T][P].		

toPrompt x_{prompt}

eal joy. atmosphere alot dialogue Clone totally [MASK].

Prompt Tuning (Lester et al. 2021)

Optimize the embeddings of a prompt, instead of the words.

Task Prompts (20K params each)

Prefix Tuning (Li and Liang 2021)

- "Prompt Tuning" optimizes only the embedding layer
- "Prefix Tuning" optimizes the prefix of all layers

Fine-tuning

Input (table-to-text)

Output (table-to-text)

Prompting and Fine Tuning

Connection to Other Training Methods

- We will be covering LoRA, Adapters, and other parameterefficient training methods in a future class
- But prefix tuning is actually very similar, with a few design differences! (He et al. 2021)

A Taxonomy of Prompting Methods

Prompting as a Prior

- Prompts are a human-interpretable method for providing a prior over the parameters of the model!
- This can be used in place of fine-tuning, or combined with finetuning (e.g. Schick and Schütze 2020)
 - More in future classes!

Questions?