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Reminder: Attention



Cross Attention
(Bahdanau et al. 2015)

 Each element in a sequence attends to elements of
another seguence

this Is an example
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Self Attention

(Cheng et al. 2016, Vaswani et al. 2017)

 Each element in the sequence attends to elements
of that sequence — context sensitive encodings!
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Calculating Attention (1)

* Use “query” vector (decoder state) and “key” vectors (all encoder states)

For each query-key pair, calculate weight

* Normalize to add to one using softmax
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Calculating Attention (2)

 Combine together value vectors (usually encoder
states, like key vectors) by taking the weighted sum
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e Use this in any part of the model you like




Transtformers



“Attention 1s All You Need”

(Vaswani et al. 201 7) Probabilies

e A sequence-to-sequence

model based entirely on
attention

» Strong results on machine

translation

e [ast: only matrix
multiplications
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Two Types of Transformers
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Decoder Only Model
(e.g. GPT, LLaMa)
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Core Transformer Concepts

Positional encodings
Multi-hneaded attention
Masked attention

Residual + layer normalization

Feed-forward layer



(Review)
Inputs and Embeddings
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Multi-nead Attention



INntuition for Multi-heads

Intuition: Information from different
parts of the sentence can be useful to Output
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Multi-head Attention Concept

MultiHead(Q, K, V) = Concat(heady, ..., head,)W®
where head; = Attention(QWiQ, KWH VIwY)

Multiply by  Split/rearrange Run attn over  Concat
weights to n attn inputs each head  and "WO©
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Code Example

def forward(self, query, key, value, mask=None) :
nbatches = query.size (0)

query = self.W g(query)
key = self.W k(key)

value = self.W v(value)
query = query.view(nbatches, -1, self.heads, self.d k).transpose(l,
key = key.viliew(nbatches, -1, self.heads, self.d k).transpose(l, )
value = value.view(nbatches, -1, self.heads, self.d k).transpose(l,
x, self.attn = attention(query, key, value)
x = (

X.transpose (1, 2)

.contiguous ()

.view (nbatches, -1, self.h * self.d k)

)

return self.W o(x)



What Happens w/ Multi-neads”?

 Example from Vaswani et al.
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Figure 3: An example of the attention mechanism following long-distance dependencies in the
encoder self-attention in layer 5 of 6. Many of the attention heads attend to a distant dependency of
the verb ‘making’, completing the phrase ‘making...more difficult’. Attentions here shown only for
the word ‘making’. Different colors represent different heads. Best viewed in color.

* See also BertVis: https://github.com/jessevig/bertviz



https://github.com/jessevig/bertviz

Positional Encoding



Positional Encoding

* The transformer model is purely attentional

* It embeddings were used, there would be no
way to distinguish between identical words

A big dog and a big cat

\/vould be identicall

A big dog and a big cat

* Positional encodings add an embedding
based on the word position

Whig + Wpos?2 Whig + Wpos6
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Sinusoidal Encoding
(Vaswani+ 2017, Kazemnejad 2019)

e Calculate each dimension with a sinusoidal function

o i . Jsin(wg - t), ifi=2k B 1
JUNS {Cos(wk 1), ifi=2k+1 where Yk = 100002k/d
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 Why”? So the dot product between two embeddings
becomes higher relatively.
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| earned Encoding
(Shaw+ 2018)

 More simply, Just create a learnable embedding
* Advantages: flexibility

* Disadvantages: impossible to extrapolate to
longer sequences



Absolute vs. Relative Encodings
(Shaw+ 2018)

* Absolute positional encodings add an encoding to

the input In hope that relative position will be
captured

* Relative positional encodings explicitly encode
relative position



Rotary Positional Encodings (RoPE)

(Su+ 2021)

 Fundamental idea: we want the dot product of
embeddings to result in a function of relative position

fq(va m) ' fk(Xm n) — g(va Xn, M — n)

* |n summary, RoPE uses trigonometry and imaginary numbers
to come up with a function that satisfies this property
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Layer Normalization ano
Residual Connections



Reminder:
Gradients and Training Instability

* |In RNNs, we asked about how backdrop through a
network causes gradients can vanish or explode

j—:o: tiny j—i =small g—: =med. g_;i =large
h, | RNN —{ h, > RNN > h, = RNN (= h, | square_err —>{/
+ + + +
xl X2 x3 y*

 The same issue occurs in multi-layer transformers!



L ayer Normalization
(Ba et al. 2016)

* Normalizes the outputs to be within a -
consistent range, preventing too Probapilties
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RMSNorm

(Zhang and Sennrich 2019)

o Simplifies LayerNorm by removing the mean and bias terms

1 n
RMS(x) = \ - Zzla;?
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Residual Connections

e Add an additive connection between
the iInput and output

Residual(x, f) = f(x) + x

* Prevents vanishing gradients and
allows f to learn the difference from
the input

* Quiz: what are the implications for
self-attention w/ and w/o residual
connections?
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Post- vs. Pre- Layer Norm
(e.g. Xiong et al. 2020)

xl;-l xl.“
o Where ShOUld Layer Norm addition
i At
LayerNorm be
applied? Before or N -—-
after? /
| yer;l m addition
e Pre-layer-norm is R
better for gradient pop—
propagation —
S

post-LayerNorm pre-LayerNorm



Feed Forward Layers



~eed rorward Layers

* Extract combination features from the .
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Some Activation Functions in Transformers

e Vaswani et al.;: RelLLU

—_

ReLLU(x) = max(0, x)

o | LaMa: Swish/SiLU (Hendricks and Gimpel 2016)

Swish Activation Function

Swish(x; 5) = x ® o(fx)




Optimization Tricks for
Transtormers



Transtformers are Powertul
but Fickle

e Optimization of models can be difficult, and
transformers are more difficult than others!

e e.9. OPT-175 training logbook
https://github.com/facebookresearch/metaseq/
blob/main/projects/OPT/chronicles/
OPT175B_Logbook.pdf



https://github.com/facebookresearch/metaseq/blob/main/projects/OPT/chronicles/OPT175B_Logbook.pdf
https://github.com/facebookresearch/metaseq/blob/main/projects/OPT/chronicles/OPT175B_Logbook.pdf
https://github.com/facebookresearch/metaseq/blob/main/projects/OPT/chronicles/OPT175B_Logbook.pdf

Optimizers for Transformers

 SGD: Update in the direction of reducing loss

 Adam: Add momentum turn and normalize by stddev of the
outputs

« Adam w/ learning rate schedule (Vaswani et al. 2017): Adds
a learning rate increase and decrease

Learning Rate Schedule

lrate = d_-%° - min(step™ ", step * warmup_steps
model

0 2500 5000 7500 10000 12500 15000 17500 20000
SSSSS

« AdamW (Loshchilov and Hutter 2017): properly applies
weight decay for regularization to Adam



L ow-Precision [raining

* Training at full 32-bit precision can be costly

* Low-precision alternatives

IEEE half-precision 16-bit float

sign exponent (5 bit) fraction (10 bit)
| | | | |
0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0
15 14 10 9 0

bfloat16

sign exponent (8 bit) fraction (7 bit)
| | | |
0 0 1 1 1 1 1 0 0 0 1 0 0 0 0 0
15 14 7 6 0

Image: Wikipedia



Checkpointing/Restarts

e Even through best efforts, training can go south — what to do”

* Monitor possible issues, e.g. through monitoring the norm of
gradients

 |f training crashes, roll back to previous checkpoint, shuffle
data, and resume

* (Also, check your code)
Image: OPT Log



Comparing Transformer
Architectures



Original Transformer vs.
L LaMa

Vaswani et al.

Norm Position Post Pre
Norm Type LayerNorm RMSNorm

Non-linearity RelLU SiLU

Positional
Encoding

Sinusoidal RoPE



How Important is It

e “Transformer” is Vaswani et al., “Transformer++" is (basically) LLaMA

2x 107

Scaling Laws on The Pile (Sequence Length 2048)

Perplexity (log scale)
)
|

6x10°

Hyena
RWKV
Transformer
- RetNet
e H 34+
w=o== Transformer++
=== Mamba

Ll ;0[19 1 1 |l I ] Ll 1 11 020
FLOPs (log scale)

e Stronger architecture is =10x more efficient!

Image: Gu and Dao (2023)



Questions?



