CS11-711 Advanced NLP Transformers

Graham Neubig
Carnegie Mellon University
Language Technologies Institute

Site
https://phontron.com/class/anlp2024/

Reminder: Attention

Cross Attention (Bahdanau et al. 2015)

- Each element in a sequence attends to elements of another sequence

Self Attention

(Cheng et al. 2016, Vaswani et al. 2017)

- Each element in the sequence attends to elements of that sequence \rightarrow context sensitive encodings!
this is an example
this
is
an
example $\quad \square$
$\square$$\square$

Calculating Attention (1)

- Use "query" vector (decoder state) and "key" vectors (all encoder states)
- For each query-key pair, calculate weight
- Normalize to add to one using softmax

Calculating Attention (2)

- Combine together value vectors (usually encoder states, like key vectors) by taking the weighted sum

- Use this in any part of the model you like

Transformers

"Attention is All You Need"

(Vaswani et al. 2017)

- A sequence-to-sequence model based entirely on attention
- Strong results on machine translation
- Fast: only matrix multiplications

Two Types of Transformers

Encoder-Decoder Model (e.g. T5, MBART)

Linear

Decoder Only Model (e.g. GPT, LLaMa)

Output

Core Transformer Concepts

- Positional encodings
- Multi-headed attention
- Masked attention
- Residual + layer normalization
- Feed-forward layer

(Review) Inputs and Embeddings

- Inputs: Generally split using subwords
the books were improved the book _s were improv _ed
- Input Embedding: Looked up, like in previously discussed models

Multi-head Attention

Intuition for Multi-heads

- Intuition: Information from different parts of the sentence can be useful to disambiguate in different ways
syntax
Trun a small business
(nearby context)
semantics
Trun a mile in 10 minutes
(farther context)
The robber made arun for it
The stocking had run

Multi-head Attention Concept

$$
\begin{aligned}
\operatorname{MultiHead}(Q, K, V) & =\operatorname{Concat}\left(\operatorname{head}_{1}, \ldots, \operatorname{head}_{h}\right) W^{O} \\
\text { where } \operatorname{head}_{i} & =\operatorname{Attention}\left(Q W_{i}^{Q}, K W_{i}^{K}, V W_{i}^{V}\right)
\end{aligned}
$$

Multiply by Split/rearrange weights to n attn inputs

Run attn over Concat each head and *Wo

Code Example

```
def forward(self, query, key, value, mask=None):
    nbatches = query.size(0)
    # l) Do all the linear projections
    query = self.W_q(query)
    key = self.W_k(key)
    value = self.W_v(value)
    # 2) Reshape to get h heads
    query = query.view(nbatches, -1, self.heads, self.d_k).transpose(1, 2)
    key = key.view(nbatches, -1, self.heads, self.d k).transpose(1, 2)
    value = value.view(nbatches, -1, self.heads, self.d_k).transpose(1, 2)
    # 3) Apply attention on all the projected vectors in batch.
    x, self.attn = attention(query, key, value)
    # 4) "Concat" using a view and apply a final linear.
    x = (
            x.transpose(1, 2)
            .contiguous()
            .view(nbatches, -1, self.h * self.d_k)
    )
    return self.W_o(x)
```


What Happens w/ Multi-heads?

- Example from Vaswani et al.

Figure 3: An example of the attention mechanism following long-distance dependencies in the encoder self-attention in layer 5 of 6 . Many of the attention heads attend to a distant dependency of the verb 'making', completing the phrase 'making...more difficult'. Attentions here shown only for the word 'making'. Different colors represent different heads. Best viewed in color.

- See also BertVis: https://github.com/jessevig/bertviz

Positional Encoding

Positional Encoding

- The transformer model is purely attentional
- If embeddings were used, there would be no way to distinguish between identical words

A big dog and a big cat

A big dog and a big cat

- Positional encodings add an embedding based on the word position

$$
W_{\text {big }}+W_{\text {pos2 }} \quad W_{\text {big }}+W_{\text {pos }}
$$

Sinusoidal Encoding (Vaswani+ 2017, Kazemnejad 2019)

- Calculate each dimension with a sinusoidal function

$$
p_{t}^{(i)}=f(t)^{(i)}:=\left\{\begin{array}{ll}
\sin \left(\omega_{k} \cdot t\right), & \text { if } i=2 k \\
\cos \left(\omega_{k} \cdot t\right), & \text { if } i=2 k+1
\end{array} \quad \text { where } \quad \omega_{k}=\frac{1}{10000^{2 k / d}}\right.
$$

- Why? So the dot product between two embeddings becomes higher relatively.

Learned Encoding (Shaw+ 2018)

- More simply, just create a learnable embedding
- Advantages: flexibility
- Disadvantages: impossible to extrapolate to longer sequences

Absolute vs. Relative Encodings (Shaw+ 2018)

- Absolute positional encodings add an encoding to the input in hope that relative position will be captured
- Relative positional encodings explicitly encode relative position

Rotary Positional Encodings (RoPE) (Su+ 2021)

- Fundamental idea: we want the dot product of embeddings to result in a function of relative position

$$
f_{q}\left(\mathbf{x}_{m}, m\right) \cdot f_{k}\left(\mathbf{x}_{n}, n\right)=g\left(\mathbf{x}_{m}, \mathbf{x}_{n}, m-n\right)
$$

- In summary, RoPE uses trigonometry and imaginary numbers to come up with a function that satisfies this property

$$
R_{\Theta, m}^{d} \mathbf{x}=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
\vdots \\
x_{d-1} \\
x_{d}
\end{array}\right) \otimes\left(\begin{array}{c}
\cos m \theta_{1} \\
\cos m \theta_{1} \\
\cos m \theta_{2} \\
\cos m \theta_{2} \\
\vdots \\
\cos m \theta_{\frac{d}{2}} \\
\cos m \theta_{\frac{d}{2}}
\end{array}\right)+\left(\begin{array}{c}
-x_{2} \\
x_{1} \\
-x_{4} \\
x_{3} \\
\vdots \\
-x_{d} \\
x_{d-1}
\end{array}\right) \otimes\left(\begin{array}{c}
\sin m \theta_{1} \\
\sin m \theta_{1} \\
\sin m \theta_{2} \\
\sin m \theta_{2} \\
\vdots \\
\sin m \theta_{\frac{d}{2}} \\
\sin m \theta_{\frac{d}{2}}
\end{array}\right)
$$

Layer Normalization and Residual Connections

Reminder:

Gradients and Training Instability

- In RNNs, we asked about how backdrop through a network causes gradients can vanish or explode

$$
\begin{aligned}
& \frac{d l}{d_{h_{0}}}=\text { tiny } \quad \frac{d l}{d_{h_{1}}}=\text { small } \quad \frac{d l}{d_{h_{2}}}=\text { med. } \frac{d l}{d_{h_{3}}}=\text { large }
\end{aligned}
$$

- The same issue occurs in multi-layer transformers!

Layer Normalization (Ba et al. 2016)

- Normalizes the outputs to be within a consistent range, preventing too much variance in scale of outputs

$$
\begin{aligned}
& \text { gain } \\
& \operatorname{LayerNorm}(\mathbf{x} ; \mathbf{g}, \mathbf{b})=\frac{\mathbf{g}}{\sigma(\mathbf{x})} \odot(\mathbf{x}-\mu(\mathbf{x})+\mathbf{b} \\
& \text { vector vector } \\
& \text { stddev } \\
& \mu(\mathbf{x})=\frac{1}{n} \sum_{i=1}^{n} x_{i} \quad \sigma(\mathbf{x})=\sqrt{\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}}
\end{aligned}
$$

RMSNorm
 (Zhang and Sennrich 2019)

- Simplifies LayerNorm by removing the mean and bias terms

$$
\operatorname{RMS}(\mathbf{x})=\sqrt{\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}}
$$

$$
\operatorname{RMSNorm}(\mathbf{x})=\frac{\mathbf{x}}{\operatorname{RMS}(\mathbf{x})} \cdot \mathbf{g}
$$

Residual Connections

- Add an additive connection between the input and output

$$
\operatorname{Residual}(\mathbf{x}, f)=f(\mathbf{x})+\mathbf{x}
$$

- Prevents vanishing gradients and allows f to learn the difference from the input
- Quiz: what are the implications for self-attention w/ and w/o residual connections?

Post- vs. Pre- Layer Norm (e.g. Xiong et al. 2020)

- Where should LayerNorm be applied? Before or after?
- Pre-layer-norm is better for gradient propagation

post-LayerNorm

pre-LayerNorm

Feed Forward Layers

Feed Forward Layers

- Extract combination features from the attended outputs
$\operatorname{FFN}\left(x ; W_{1}, \mathbf{b}_{1}, W_{2}, \mathbf{b}_{2}\right)=f\left(\mathbf{x} W_{1}+\mathbf{b}_{1}\right) W_{2}+\mathbf{b}_{2}$
Non-linearity

Some Activation Functions in Transformers

- Vaswani et al.: ReLU

$$
\operatorname{ReLU}(\mathbf{x})=\max (0, \mathbf{x})
$$

- LLaMa: Swish/SiLU (Hendricks and Gimpel 2016)
$\operatorname{Swish}(\mathbf{x} ; \beta)=\mathbf{x} \odot \sigma(\beta \mathbf{x})$

Optimization Tricks for Transformers

Transformers are Powerful but Fickle

- Optimization of models can be difficult, and transformers are more difficult than others!
- e.g. OPT-175 training logbook https://github.com/facebookresearch/metaseq/ blob/main/projects/OPT/chronicles/
OPT175B Logbook.pdf

Optimizers for Transformers

- SGD: Update in the direction of reducing loss
- Adam: Add momentum turn and normalize by stddev of the outputs
- Adam w/ learning rate schedule (Vaswani et al. 2017): Adds a learning rate increase and decrease

Learning Rate Schedule
lrate $=d_{\text {model }}^{-0.5} \cdot \min \left(\right.$ step $^{-0.5}$, step $*$ warmup_steps $\left.^{-1.5}\right)$

- AdamW (Loshchilov and Hutter 2017): properly applies weight decay for regularization to Adam

Low-Precision Training

- Training at full 32-bit precision can be costly
- Low-precision alternatives

bfloat16

Image: Wikipedia

Checkpointing/Restarts

- Even through best efforts, training can go south - what to do?
- Monitor possible issues, e.g. through monitoring the norm of gradients

- If training crashes, roll back to previous checkpoint, shuffle data, and resume
- (Also, check your code)

Comparing Transformer Architectures

Original Transformer vs. LLaMa

	Vaswani et al.	LLaMA
Norm Position	Post	Pre
Norm Type	LayerNorm	RMSNorm
Non-linearity	ReLU	SiLU
Positional Encoding	Sinusoidal	RoPE

How Important is It?

- "Transformer" is Vaswani et al., "Transformer++" is (basically) LLaMA

- Stronger architecture is $\approx 10 x$ more efficient!

Questions?

