
CS11-711 Advanced NLP

Transformers
Graham Neubig

Site
https://phontron.com/class/anlp2024/

https://phontron.com/class/anlp2024/

Reminder: Attention

Cross Attention
(Bahdanau et al. 2015)

• Each element in a sequence attends to elements of
another sequence

this is an example
kore
wa
rei

desu

Self Attention
(Cheng et al. 2016, Vaswani et al. 2017)
• Each element in the sequence attends to elements

of that sequence → context sensitive encodings!

this is an example
this
is
an

example

Calculating Attention (1)
• Use “query” vector (decoder state) and “key” vectors (all encoder states)
• For each query-key pair, calculate weight
• Normalize to add to one using softmax

kono eiga ga kirai
Key

Vectors

I hate

Query Vector

a1=2.1 a2=-0.1 a3=0.3 a4=-1.0

softmax

α1=0.76 α2=0.08 α3=0.13 α4=0.03

Calculating Attention (2)
• Combine together value vectors (usually encoder

states, like key vectors) by taking the weighted sum
kono eiga ga kirai

Value
Vectors

α1=0.76 α2=0.08 α3=0.13 α4=0.03
* * * *

• Use this in any part of the model you like

Transformers

• A sequence-to-sequence
model based entirely on
attention

• Strong results on machine
translation

• Fast: only matrix
multiplications

“Attention is All You Need”
(Vaswani et al. 2017)

Output
Embedding

Multi-Head
Attention

Feed
Forward

Feed
Forward

Multi-Head
Attention

Nx

Nx

Positional
Encoding

Positional
Encoding

Inputs Outputs
(shifted right)

Output
Probabilities

⊕ ⊕

Input
Embedding

Add & Norm

Add & Norm

Add & Norm

Softmax

Linear

Add & Norm

Add & Norm

Masked
Multi-Head
Attention

Two Types of Transformers

Output
Embedding

Multi-Head
Attention

Feed
Forward

Feed
Forward

Multi-Head
Attention

Nx

Nx

Positional
Encoding

Positional
Encoding

Inputs Outputs
(shifted right)

Output
Probabilities

⊕ ⊕

Input
Embedding

Add & Norm

Add & Norm

Add & Norm

Softmax

Linear

Add & Norm

Add & Norm

Masked
Multi-Head
Attention

Encoder-Decoder Model
(e.g. T5, MBART)

Decoder Only Model
(e.g. GPT, LLaMa)

Masked
Multi-Head
Attention

Feed
Forward

Nx

Positional
Encoding

Inputs

Output
Probabilities

⊕

Input
Embedding

Add & Norm

Softmax

Linear

Add & Norm

Core Transformer Concepts

• Positional encodings

• Multi-headed attention

• Masked attention

• Residual + layer normalization

• Feed-forward layer

• Inputs: Generally split using
subwords

the books were improved

the book _s were improv _ed

• Input Embedding: Looked up, like in
previously discussed models

(Review)
Inputs and Embeddings

Masked
Multi-Head
Attention

Feed
Forward

Nx

Positional
Encoding

Inputs

Output
Probabilities

⊕

Input
Embedding

Add & Norm

Softmax

Linear

Add & Norm

Multi-head Attention

• Intuition: Information from different
parts of the sentence can be useful to
disambiguate in different ways

Intuition for Multi-heads

Masked
Multi-Head
Attention

Feed
Forward

Nx

Positional
Encoding

Inputs

Output
Probabilities

⊕

Input
Embedding

Add & Norm

Softmax

Linear

Add & Norm

I run a small business

I run a mile in 10 minutes

The robber made a run for it

The stocking had a run

syntax
(nearby context)

semantics
(farther context)

Multi-head Attention Concept

Q

K

V

* WQ

* WK

* WV

Split/rearrange
to n attn inputs

Run attn over
each head

attn()

Concat
and *WO

Multiply by
weights

MultiHead(Q,K, V) = Concat(head1, ..., headh)W
O

where headi = Attention(QWQ
i , KWK

i , V W V
i)

Code Example
 def forward(self, query, key, value, mask=None):
 nbatches = query.size(0)

 # 1) Do all the linear projections
 query = self.W_q(query)
 key = self.W_k(key)
 value = self.W_v(value)

 # 2) Reshape to get h heads
 query = query.view(nbatches, -1, self.heads, self.d_k).transpose(1, 2)
 key = key.view(nbatches, -1, self.heads, self.d_k).transpose(1, 2)
 value = value.view(nbatches, -1, self.heads, self.d_k).transpose(1, 2)

 # 3) Apply attention on all the projected vectors in batch.
 x, self.attn = attention(query, key, value)

 # 4) "Concat" using a view and apply a final linear.
 x = (
 x.transpose(1, 2)
 .contiguous()
 .view(nbatches, -1, self.h * self.d_k)
)
 return self.W_o(x)

What Happens w/ Multi-heads?
• Example from Vaswani et al.

• See also BertVis: https://github.com/jessevig/bertviz

https://github.com/jessevig/bertviz

Positional Encoding

• The transformer model is purely attentional

• If embeddings were used, there would be no
way to distinguish between identical words

Positional Encoding

Masked
Multi-Head
Attention

Feed
Forward

Nx

Positional
Encoding

Inputs

Output
Probabilities

⊕

Input
Embedding

Add & Norm

Softmax

Linear

Add & Norm

A big dog and a big cat

A big dog and a big cat
would be identical!

• Positional encodings add an embedding
based on the word position

wbig + wpos2 wbig + wpos6

Sinusoidal Encoding
(Vaswani+ 2017, Kazemnejad 2019)

• Calculate each dimension with a sinusoidal function

p
(i)
t = f(t)(i) :=

{

sin(ωk · t), if i = 2k

cos(ωk · t), if i = 2k + 1 where ωk =
1

100002k/d

• Why? So the dot product between two embeddings
becomes higher relatively.

Learned Encoding
(Shaw+ 2018)

• More simply, just create a learnable embedding

• Advantages: flexibility

• Disadvantages: impossible to extrapolate to
longer sequences

Absolute vs. Relative Encodings
(Shaw+ 2018)

• Absolute positional encodings add an encoding to
the input in hope that relative position will be
captured

• Relative positional encodings explicitly encode
relative position

Rotary Positional Encodings (RoPE)
(Su+ 2021)

• Fundamental idea: we want the dot product of
embeddings to result in a function of relative position

fq(xm,m) · fk(xn, n) = g(xm,xn,m− n)

• In summary, RoPE uses trigonometry and imaginary numbers
to come up with a function that satisfies this property

R
d
Θ,mx =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

x1

x2

x3

x4

...

xd−1

xd

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⊗

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

cosmθ1

cosmθ1

cosmθ2

cosmθ2
...

cosmθ d

2

cosmθ d

2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

+

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−x2

x1

−x4

x3

...

−xd

xd−1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⊗

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

sinmθ1

sinmθ1

sinmθ2

sinmθ2
...

sinmθ d

2

sinmθ d

2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Layer Normalization and
Residual Connections

Reminder:
Gradients and Training Instability
• In RNNs, we asked about how backdrop through a

network causes gradients can vanish or explode

• The same issue occurs in multi-layer transformers!

• Normalizes the outputs to be within a
consistent range, preventing too
much variance in scale of outputs

Layer Normalization
(Ba et al. 2016)

Masked
Multi-Head
Attention

Feed
Forward

Nx

Positional
Encoding

Inputs

Output
Probabilities

⊕

Input
Embedding

Add & Norm

Softmax

Linear

Add & Norm

LayerNorm(x;g,b) =
g

σ(x)
⊙ (x− µ(x)) + b

gain bias

vector
mean

µ(x) =
1

n

n∑

i=1

xi

vector
stddev

σ(x) =

√

√

√

√

1

n

n
∑

i=1

(xi − µ)2

RMSNorm
(Zhang and Sennrich 2019)

• Simplifies LayerNorm by removing the mean and bias terms

RMS(x) =

√

√

√

√

1

n

n
∑

i=1

x
2
i

RMSNorm(x) =
x

RMS(x)
· g

• Add an additive connection between
the input and output

Residual Connections

Masked
Multi-Head
Attention

Feed
Forward

Nx

Positional
Encoding

Inputs

Output
Probabilities

⊕

Input
Embedding

Add & Norm

Softmax

Linear

Add & NormResidual(x, f) = f(x) + x

• Prevents vanishing gradients and
allows f to learn the difference from
the input

• Quiz: what are the implications for
self-attention w/ and w/o residual
connections?

Post- vs. Pre- Layer Norm
(e.g. Xiong et al. 2020)

• Where should
LayerNorm be
applied? Before or
after?

• Pre-layer-norm is
better for gradient
propagation

post-LayerNorm pre-LayerNorm

Feed Forward Layers

• Extract combination features from the
attended outputs

Feed Forward Layers

Masked
Multi-Head
Attention

Feed
Forward

Nx

Positional
Encoding

Inputs

Output
Probabilities

⊕

Input
Embedding

Add & Norm

Softmax

Linear

Add & Norm

Linear1
Non-linearity

Linear2
f()

FFN(x;W1,b1,W2,b2) = f(xW1 + b1)W2 + b2

• Vaswani et al.: ReLU

• LLaMa: Swish/SiLU (Hendricks and Gimpel 2016)

Some Activation Functions in Transformers

ReLU(x) = max(0,x)

Swish(x; β) = x⊙ σ(βx)

Optimization Tricks for
Transformers

Transformers are Powerful
but Fickle

• Optimization of models can be difficult, and
transformers are more difficult than others!

• e.g. OPT-175 training logbook
https://github.com/facebookresearch/metaseq/
blob/main/projects/OPT/chronicles/
OPT175B_Logbook.pdf

https://github.com/facebookresearch/metaseq/blob/main/projects/OPT/chronicles/OPT175B_Logbook.pdf
https://github.com/facebookresearch/metaseq/blob/main/projects/OPT/chronicles/OPT175B_Logbook.pdf
https://github.com/facebookresearch/metaseq/blob/main/projects/OPT/chronicles/OPT175B_Logbook.pdf

Optimizers for Transformers
• SGD: Update in the direction of reducing loss

• Adam: Add momentum turn and normalize by stddev of the
outputs

• Adam w/ learning rate schedule (Vaswani et al. 2017): Adds
a learning rate increase and decrease

• AdamW (Loshchilov and Hutter 2017): properly applies
weight decay for regularization to Adam

lrate = d−0.5

model
·min(step−0.5, step ∗ warmup steps−1.5)

Low-Precision Training
• Training at full 32-bit precision can be costly

• Low-precision alternatives

Image: Wikipedia

Checkpointing/Restarts
• Even through best efforts, training can go south — what to do?

• Monitor possible issues, e.g. through monitoring the norm of
gradients

• If training crashes, roll back to previous checkpoint, shuffle
data, and resume

• (Also, check your code)
Image: OPT Log

Comparing Transformer
Architectures

Original Transformer vs.
LLaMa

Vaswani et al. LLaMA

Norm Position Post Pre

Norm Type LayerNorm RMSNorm

Non-linearity ReLU SiLU

Positional
Encoding Sinusoidal RoPE

How Important is It?
• “Transformer” is Vaswani et al., “Transformer++” is (basically) LLaMA

Image: Gu and Dao (2023)

• Stronger architecture is ≈10x more efficient!

Questions?

