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Reminder: Attention



Cross Attention 
(Bahdanau et al. 2015)

• Each element in a sequence attends to elements of 
another sequence

this is an example
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Self Attention 
(Cheng et al. 2016, Vaswani et al. 2017)
• Each element in the sequence attends to elements 

of that sequence → context sensitive encodings!

this is an example
this
is
an

example



Calculating Attention (1)
• Use “query” vector (decoder state) and “key” vectors (all encoder states) 
• For each query-key pair, calculate weight 
• Normalize to add to one using softmax

kono eiga ga kirai
Key 

Vectors

I hate

Query Vector

a1=2.1 a2=-0.1 a3=0.3 a4=-1.0

softmax

α1=0.76 α2=0.08 α3=0.13 α4=0.03



Calculating Attention (2)
• Combine together value vectors (usually encoder 

states, like key vectors) by taking the weighted sum
kono eiga ga kirai

Value 
Vectors

α1=0.76 α2=0.08 α3=0.13 α4=0.03
* * * *

• Use this in any part of the model you like



Transformers



• A sequence-to-sequence 
model based entirely on 
attention 

• Strong results on machine 
translation 

• Fast: only matrix 
multiplications

“Attention is All You Need” 
(Vaswani et al. 2017)
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Two Types of Transformers
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Encoder-Decoder Model 
(e.g. T5, MBART)

Decoder Only Model 
(e.g. GPT, LLaMa)

Masked 
Multi-Head 
Attention

Feed 
Forward

Nx

Positional 
Encoding

Inputs

Output 
Probabilities

⊕

Input 
Embedding

Add & Norm

Softmax

Linear

Add & Norm



Core Transformer Concepts

• Positional encodings 

• Multi-headed attention 

• Masked attention 

• Residual + layer normalization 

• Feed-forward layer



• Inputs: Generally split using 
subwords 
 
the books were improved 
 
the book _s were improv _ed 

• Input Embedding: Looked up, like in 
previously discussed models

(Review) 
Inputs and Embeddings
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Multi-head Attention



• Intuition: Information from different 
parts of the sentence can be useful to 
disambiguate in different ways

Intuition for Multi-heads
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I run a small business

I run a mile in 10 minutes

The robber made a run for it

The stocking had a run

syntax 
(nearby context)

semantics 
(farther context)



Multi-head Attention Concept

Q

K

V

* WQ

* WK

* WV

Split/rearrange 
to n attn inputs

Run attn over 
each head

attn()

Concat 
and *WO

Multiply by 
weights

MultiHead(Q,K, V ) = Concat(head1, ..., headh)W
O

where headi = Attention(QWQ
i , KWK

i , V W V
i )



Code Example
    def forward(self, query, key, value, mask=None): 
        nbatches = query.size(0) 

        # 1) Do all the linear projections 
        query = self.W_q(query) 
        key = self.W_k(key) 
        value = self.W_v(value) 

        # 2) Reshape to get h heads 
        query = query.view(nbatches, -1, self.heads, self.d_k).transpose(1, 2) 
        key = key.view(nbatches, -1, self.heads, self.d_k).transpose(1, 2) 
        value = value.view(nbatches, -1, self.heads, self.d_k).transpose(1, 2) 

        # 3) Apply attention on all the projected vectors in batch. 
        x, self.attn = attention(query, key, value) 

        # 4) "Concat" using a view and apply a final linear. 
        x = ( 
            x.transpose(1, 2) 
            .contiguous() 
            .view(nbatches, -1, self.h * self.d_k) 
        ) 
        return self.W_o(x) 



What Happens w/ Multi-heads?
• Example from Vaswani et al.

• See also BertVis: https://github.com/jessevig/bertviz 

https://github.com/jessevig/bertviz


Positional Encoding



• The transformer model is purely attentional 

• If embeddings were used, there would be no 
way to distinguish between identical words

Positional Encoding

Masked 
Multi-Head 
Attention

Feed 
Forward

Nx

Positional 
Encoding

Inputs

Output 
Probabilities

⊕

Input 
Embedding

Add & Norm

Softmax

Linear

Add & Norm

A big dog and a big cat

A big dog and a big cat
would be identical!

• Positional encodings add an embedding 
based on the word position

wbig + wpos2 wbig + wpos6



Sinusoidal Encoding 
(Vaswani+ 2017, Kazemnejad 2019)

• Calculate each dimension with a sinusoidal function

p
(i)
t = f(t)(i) :=

{

sin(ωk · t), if i = 2k

cos(ωk · t), if i = 2k + 1 where ωk =
1

100002k/d

• Why? So the dot product between two embeddings 
becomes higher relatively.



Learned Encoding 
(Shaw+ 2018)

• More simply, just create a learnable embedding 

• Advantages: flexibility 

• Disadvantages: impossible to extrapolate to 
longer sequences



Absolute vs. Relative Encodings 
(Shaw+ 2018)

• Absolute positional encodings add an encoding to 
the input in hope that relative position will be 
captured 

• Relative positional encodings explicitly encode 
relative position



Rotary Positional Encodings (RoPE) 
(Su+ 2021)

• Fundamental idea: we want the dot product of 
embeddings to result in a function of relative position

fq(xm,m) · fk(xn, n) = g(xm,xn,m− n)

• In summary, RoPE uses trigonometry and imaginary numbers 
to come up with a function that satisfies this property
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Layer Normalization and 
Residual Connections



Reminder:  
Gradients and Training Instability
• In RNNs, we asked about how backdrop through a 

network causes gradients can vanish or explode

• The same issue occurs in multi-layer transformers!



• Normalizes the outputs to be within a 
consistent range, preventing too 
much variance in scale of outputs

Layer Normalization 
(Ba et al. 2016)
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RMSNorm 
(Zhang and Sennrich 2019)

• Simplifies LayerNorm by removing the mean and bias terms

RMS(x) =

√

√

√

√

1

n

n
∑

i=1

x
2
i

RMSNorm(x) =
x

RMS(x)
· g



• Add an additive connection between 
the input and output

Residual Connections
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• Prevents vanishing gradients and 
allows f to learn the difference from 
the input 

• Quiz: what are the implications for 
self-attention w/ and w/o residual 
connections?



Post- vs. Pre- Layer Norm 
(e.g. Xiong et al. 2020)

• Where should 
LayerNorm be 
applied? Before or 
after? 

• Pre-layer-norm is 
better for gradient 
propagation

post-LayerNorm pre-LayerNorm



Feed Forward Layers



• Extract combination features from the 
attended outputs

Feed Forward Layers
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FFN(x;W1,b1,W2,b2) = f(xW1 + b1)W2 + b2



• Vaswani et al.: ReLU 
 
 

• LLaMa: Swish/SiLU (Hendricks and Gimpel 2016)

Some Activation Functions in Transformers

ReLU(x) = max(0,x)

Swish(x; β) = x⊙ σ(βx)



Optimization Tricks for 
Transformers



Transformers are Powerful 
but Fickle

• Optimization of models can be difficult, and 
transformers are more difficult than others! 

• e.g. OPT-175 training logbook 
https://github.com/facebookresearch/metaseq/
blob/main/projects/OPT/chronicles/
OPT175B_Logbook.pdf 

https://github.com/facebookresearch/metaseq/blob/main/projects/OPT/chronicles/OPT175B_Logbook.pdf
https://github.com/facebookresearch/metaseq/blob/main/projects/OPT/chronicles/OPT175B_Logbook.pdf
https://github.com/facebookresearch/metaseq/blob/main/projects/OPT/chronicles/OPT175B_Logbook.pdf


Optimizers for Transformers
• SGD: Update in the direction of reducing loss 

• Adam: Add momentum turn and normalize by stddev of the 
outputs 

• Adam w/ learning rate schedule (Vaswani et al. 2017): Adds 
a learning rate increase and decrease 
 
 
 
 

• AdamW (Loshchilov and Hutter 2017): properly applies 
weight decay for regularization to Adam

lrate = d−0.5

model
·min(step−0.5, step ∗ warmup steps−1.5)



Low-Precision Training
• Training at full 32-bit precision can be costly 

• Low-precision alternatives

Image: Wikipedia



Checkpointing/Restarts
• Even through best efforts, training can go south — what to do? 

• Monitor possible issues, e.g. through monitoring the norm of 
gradients 
 
 
 
 
 
 

• If training crashes, roll back to previous checkpoint, shuffle 
data, and resume 

• (Also, check your code)
Image: OPT Log



Comparing Transformer 
Architectures



Original Transformer vs. 
LLaMa

Vaswani et al. LLaMA

Norm Position Post Pre

Norm Type LayerNorm RMSNorm

Non-linearity ReLU SiLU

Positional 
Encoding Sinusoidal RoPE



How Important is It?
• “Transformer” is Vaswani et al., “Transformer++” is (basically) LLaMA

Image: Gu and Dao (2023)

• Stronger architecture is ≈10x more efficient!



Questions?


