Word Segmentation
and Morphology

11-711 Advanced NLP
November 2022

(Some slides adapted from Lori Levin, David Mortenson, and J&M)

Two major classes of approaches

* Linguistic approaches:

* Segmenting into words that make sense with grammars/meanings
* Segmenting into subword units that make sense with grammars/meanings

* Technological approaches:

* Segmenting into words to make processing efficient/better
* Segmenting into subwords to make processing efficient/better

We will look at both; linguistic approaches matter more if later stages
involve parsing and/or semantics

But first: What is a word?

But first: What is a word?

* The things that are in the dictionary?
* But how did the lexicographers decide what to put in the dictionary?

But first: What is a word?

* The things that are in the dictionary?
* But how did the lexicographers decide what to put in the dictionary?

* The things between spaces and punctuation?

But first: What is a word?

* The things that are in the dictionary?
* But how did the lexicographers decide what to put in the dictionary?

* The things between spaces and punctuation?

* The smallest unit that can be uttered in isolation?

* You could say this word in isolation: Unimpressively
* This one too: impress

e But you probably wouldn’t say these in isolation, unless you were talking
about morphology:
* un
* jve
° /y

So what is a word?

» Can get pretty tricky:
e didn’t
* would’ve
* gonna
* shoulda woulda coulda
* Ima
* blackboard (vs. school board)
* baseball (vs. golf ball)
* the person who left’s hat; Jim and Gregg’s apartment
* acct.
- CMU

mmon
JUJIN R.

- Q:A\ LOR

- The Oxford Handbook of

THE WORD

About 1000 pages. $139.99
You don’t have to read it.
The point is that it takes 1000 pages

just to survey the issues related to
what words are.

So what is a word?

* It is up to you or the software you use for processing words.
* Take linguistics classes.
* Make good decisions in software design and engineering.

Tokenization

Tokenization

* Some Asian languages have obvious issues:
AL “EEEERRE” TR RaEFYL b22H7E

E AR E M AT “IIEBUN T NI AR, B
JiF 1E AT .

Tokenization

* Some Asian languages have obvious issues:
AL “EEEERRE” TR RaEFYL b22H7E

E AR E M AT “IIEBUN T NI AR, B
JiF 1E AT .

* But German too: Noun-noun compounds:
Gesundheitsversicherungsgesellschaften

Tokenization

* Some Asian languages have obvious issues:
FILE “ AR R 2" PUTE AL/ h22H
HABHRRB A R EBUR " WA, B IR
I IE R

* But German too: Noun-noun compounds:

Gesundheits-versicherungs-gesellschaften (health
insurance companies)

Tokenization

* Some Asian languages have obvious issues:
AL “EEEERRE” TR RaEFYL b22H7E

E AR E M AT “IIEBUN T NI AR, B
JiF 1E AT .

* But German too: Noun-noun compounds:
Gesundheitsversicherungsgesellschaften
 Spanish clitics: Darmelo

Tokenization

* Some Asian languages have obvious issues:
AL “EEEERRE” TR RaEFYL b22H7E

E AR E M AT “IIEBUN T NI AR, B
JiF 1E AT .

* But German too: Noun-noun compounds:
Gesundheitsversicherungsgesellschaften
* Spanish clitics: Dar-me-lo (To give me it)

Tokenization

* Some Asian languages have obvious issues:
AL “EEEERRE” TR RaEFYL b22H7E

E AR E M AT “IIEBUN T NI AR, B
JiF 1E AT .

* But German too: Noun-noun compounds:
Gesundheitsversicherungsgesellschaften
 Spanish clitics: Darmelo

* Even English has issues, to a smaller degree: Gregg
and Bob’s house

Tokenization

Input: raw text

Dr. Smith said tokenization of English is “harder than you’ve thought.”
When in New York, he paid $12.00 a day for lunch and wondered what it would
be like to work for AT&T or Google, Inc.

Output from Stanford Parser: http://nlp.stanford.edu:8080/parser/index.jsp
with part-of-speech tags:

Dr./NNP Smith/NNP said/VBD tokenization/NN of/IN English/NNP
is?VBZ /" harder/JJR than/IN you/PRP 've/VBP thought/VBN ./.

When/WRB in/IN New/NNP York/NNP ,/, he/PRP paid/VBD $/$ 12.00/CD
a/DT day/NN for/IN lunch/NN and/CC wondered/VBD what/WP it/PRP
would/MD be/VB like/JJ to/TO work/VB for/IN AT&T/NNP or/CC
Google/NNP ,/, Inc./NNP

http://nlp.stanford.edu:8080/parser/index.jsp

Tokenization approaches

* Traditional:
* For languages with word spaces: spaces, punctuation, plus rules
* For Chinese etc: Large dictionaries, punctuation, plus rules

* SentencePiece:

* For Chinese etc: Use subword segmentation to find the words without pre-
tokenization

(We’ll see subword segmentation later today.)

Sentence Segmentation

e I, ? mostly unambiguous but period “” is very ambiguous:
* Sentence boundary

* Abbreviations like Inc. or Dr.
* Numbers like .02% or 4.3

« Common algorithm: Tokenize first: use rules or ML to classify a period as
either (a) part of the word or (b) a sentence-boundary.
* An abbreviation dictionary can help

* Sentence segmentation can then often be done by rules based on this
tokenization.

Two major classes of approaches

* Linguistic approaches:
* Segmenting into words that make sense with grammars/meanings
* Segmenting into subword units that make sense with grammars/meanings

* Technological approaches:

* Segmenting into words to make processing efficient/better
* Segmenting into subwords to make processing efficient/better

We will look at both; linguistic approaches matter more if later stages
involve parsing and/or semantics

Linguistic Morphology

What is Linguistic Morphology?

* Morphology is the study of the internal structure of words.

 Derivational morphology. How new words are created from existing words.
* [grace]

* [[grace]ful]
* [un[grace]ful]]

* Inflectional morphology. How features relevant to the syntactic context of a word are
marked on that word.

* This example illustrates number (singular and plural) and tense (present and past).
* Green indicates irregular. Blue indicates zero marking of inflection. Red indicates regular inflection.
student walks.
students walk.
students walked.

* Compounding. Creating new words by combining existing words
* With or without spaces: surfboard, golf ball, blackboard

Morphemes

* Morphemes. Minimal pairings of form and meaning.

* Roots. The “core” of a word that carries its basic meaning.
* apple : ‘apple’
* walk : ‘walk’
 Affixes (prefixes, suffixes, infixes, and circumfixes). Morphemes that are
added to a base (a root or stem) to perform either derivational or inflectional
functions.
* un-: ‘NeG’
* -s: ‘PLURAL’

Lexicons and Parts of Speech

* There are many thousands of root words in a language

* They naturally divide into classes (Parts of Speech, “POS”) based on:

* the morphological patterns they participate in
* the way they interact in the grammar (syntax) of the language

* the kinds of meanings they express

* So typically there is a lexicon, a database containing root words, their
POS, any other idiosyncratic info, and possibly their semantics

Language Typology

Types of Languages:

* In order of morphological complexity:
* Isolating (or Analytic)

Fusional (or Inflecting)

Agglutinative

Polysynthetic

Others

Isolating Languages: Chinese

Little morphology other than compounding

inflection

» few affixes (prefixes and suffixes):
o A FAT, AROT, ARAT oo o [RIEAT]

men: womeén, nimén, tameén, tongzhimen
plural: we, you (pl.), they comrades, LGBT people
« “suffixes” that mark aspect: # -zh¢ ‘continuous aspect’

e Chinese derivation
« ZARXK yishijia ‘artist’
* Chinese is a champion in the realm of compounding—up to 80% of
Chinese words are actually compounds.

% |+ ® | > (®R
du fan dufén

‘poison, drug’ ‘vendor’ ‘drug trafficker’

Agglutinative Languages: Swahili

Verbs in Swahili have an average of 4-5 morphemes, http://wals.info/valuesets/22A-swa

Swabhili English

li
ta
li

ta

* Orange prefixes mark noun class (like gender, except Swabhili has nine instead of two or
three).
* Verbs agree with nouns in noun class.
* Adjectives also agree with nouns.
* Very helpful in parsing.
* Black prefixes indicate tense.

Turkish

Example of extreme agglutination
But most Turkish words have around three morphemes
uygarlastiramadiklarimizdanmissinizcasina
“(behaving) as if you are among those whom we were not able to civilize”
uygar “civilized”
+las “become”
+tir “causeto’
+ama “notable”
+dik past participle
+lar plural
+1imiz first person plural possessive (“our”)
+dan ablative case (“from/among”)
+mis past
+siniz second person plural (“y’ all”)
+casina finite verb > adverb (“as if")

Operationalization

* operate (opus/opera + ate)
* ion

e al

*jze

* ate

* ion

Polysynthetic Languages: Yupik

* Polysynthetic morphologies allow the creation of full “sentences” by
morphological means.

* They often allow the incorporation of nouns into verbs.

* They may also have affixes that attach to verbs and take the place of
nouns.

untu-ssur-qatar-ni-ksaite-ngqiggte-uq
reindeer-hunt-FUT-say-NEG-again-3SG.INDIC
‘He had not yet said again that he was going to hunt reindeer’

Fusional Languages: Spanish

Singular Plural

3rd
formal 2

Present

Imperfect

Preterit

Future

Conditional

Indo-European: 4000BC

From Wikipedia

Indo-European: 3000BC

\

7
=

Indo-European: 2000BC

Indo-European: 500BC

Indo-European: “hand”

Reconstructed outcomes of PIE 'hand’

«+— presumed innovations

SE-IE

(1)

BalkanGrp (1)

in the
main branches
of the

sta/zastds [(2)

SLRD-Tree

by Hans J. Holm

60

70 80 90 100 %

One word in Mandarin may actually originate
from PIE:

Do

= “honey”
meed fermented honey

A Brief History of English

* 900,000 BC? Humans invade British Isles

e 800 BC? Celts invade (Gaelic) [first Indo-Europeans there]
* 40 AD Romans invade (Latin)

« 410 AD Anglo-Saxons invade (West German)

« 790 AD Vikings invade (North German)

« 1066 AD Normans invade (Norman French/Latin)

* The English spend a few hundred years invading rest of British Isles

* A little later, British start invading everyone else
* North America, India, China, ...

Root-and-Pattern Morphology: Arabic

. A special kind of fusional morphology found in
Arabic, Hebrew, and their cousins.

* Root usually consists of a sequence of consonants.

* Words are derived and, to some extent, inflected by patterns of
vowels intercalated among the root consonants.
itaab ‘book’
aatib ‘writer; writing’
* mal<tab ‘office; desk’
* malctaba ‘library’

Other Non-Concatenative Morphological
Processes

involves operations other than the
concatenation of affixes with bases.

* Infixation. A morpheme is inserted inside another morpheme instead of
before or after it.

* Reduplication. Can be prefixing, suffixing, and even infixing.
* Tagalog:
* sulat (write, imperative)
* susulat (reduplication) (write, future)
* sumulat (infixing) (write, past)
* sumusulat (infixing and reduplication) (write, present)

, including the umlaut in English tooth - teeth;
, including the truncation in English nickname formation
(David - Dave); and so on.

* Tone change; stress shift. And more...

Type-Token Curves

Finnish is agglutinative
IAupiaq is polysynthetic

Types and Tokens:

“I like to walk. lam
walking now. | took a
long walk earlier too.”

The type walk occurs
twice. So there are two

tokens of the type walk.

Walking is a different
type that occurs once.

6000

5000

4000

3000

Types

2000

1000 -

Type-Token Curves

——English
Arabic /
——Hocak M
Inupiag
——Finnish — /
1000 2000 3000 4000 5000 6000 7000 8000 9000

Tokens

10000

Morphological Processing

Recognizing the words of a language

* Input: a string (from some alphabet)
e Qutput:is it a legal word? (yes or no)

Morphology information sources

* Lexicon of roots, plus list of affixes
* Morphotactics: rules for how morphemes combine

* Spelling/pronunciation rules

fox+PlI goose+Pl stem+feature
fox —s (or fox”s) geese morpheme sequence
foxes geese surface form

FSA for English Noun inflections

. reg-noun
ir}eg:;)l-r;(;un

irreg-sg-noun

~—af

plural -s P

& q

T KK] A finite-state automaton for English nominal inflection.

reg-noun irreg-pl-noun
Lexicon: fox o

cat sheep

aardvark mice

irreg-sg-noun plural
goose -5
sheep

mouse

Note: “fox” becomes plural by adding “es” not

aw.n
S.

We will get to that later.

Finite-State Automaton

* Q: afinite set of states

* gqo € Q: aspecial start state
 F € Q: aset of final states
* 3. afinite alphabet

* Transitions:

* Encodes a set of strings that can be recognized by following
paths from go to some state in F.

FSA for English Adjective derivations

Big, bigger, biggest Cool, cooler, coolest, coolly
Happy, happier, happiest, happily Red, redder, reddest
Unhappy, unhappier, unhappiest, unhappily Real, unreal, really

Clear, clearer, clearest, clearly

Unclear, unclearly

. un- ___ adjiroot __ -er -est-y
@) @) {((w

3

An FSA for a fragment of English adjective morphology: Antworth’s Proposal #1.

But note that this accepts words like “unbig”.

FSA for English Derivational Morphology

o noun, - -|zeN P -atlon/N P, Pt
(- | [
0 ... @ @ —
— t—able/A ,TJW”‘F wy
W_adiy .)/q " -ness/N 6
[N 5 g -
’\ ‘ adj-gus S 'neSS’N - —
| \verby 7--i-\ie'/A' B 'f;a'-:-\;;{‘ -ly/Adv dﬁg/l
oy - _NSa— =
verb, “E——— - — -y/Adv
~— = & ;atn{e/A __,\-fUUA
noruvrjli . j_1 —@l

An FSA for another fragment of English derivational morphology.

How big do these automata get? Reasonable coverage of a language takes an expert about two to four

months.

What does it take to be an expert? Study linguistics to get used to all the common and not-so-common
things that happen, and then practice.

Morphological Parsing

Input: a word

Output: the word’s stem(s) and features expressed by other
morphemes.

Example: geese - goose +N +P|
gooses - goose +V +3P +Sg
dog - {dog +N +Sg, dog +V}
leaves - {leaf +N +PI, leave +V +3P +Sg}

Finite State Transducers

* Q: afinite set of states

* go € Q: a special start state

* F € Q: asetof final states

* 7 and A: two finite alphabets

* Transitions:
a st ‘n

sex*andt € A*

Morphological Parsing with FSTs

reg-noun . plural-s ___

@ — . 48 - irreg-pl-noun irreg-sg-noun plural
dp (94 sy reg-noun Irreg-p €g-Sg p
U \J B fox geese goose -s
“_irreg-pl-noun. cat sheep sheep
aardvark mice mouse

irreg-sg-noun
A finite-state automaton for English nominal inflection.

reg-noun irreg-pl-noun irreg-sg-noun

fox goeoese goose
cat sheep sheep
iz /_ _\‘ +P| aardvark mo:diuesice mouse
+N —
~~ reg-noun #,+Sg vl

“ ”
(= irreg-sg-noun_ /@) +N /A +S ~—_4% Note “same sym bol

\,Jj' shorthand.

\.irreg-pl-noun Y
o) < \(@ # A denotes a

IR K] A schematic transducer for English nominal number inflection Tyym. The sym- morp he me bou n da ry'
bols above each arc represent elements of the morphological parse in the lexical tape; the symbols

below each arc represent the surface tape (or the intermediate tape, to be described later), using

the morpheme-boundary symbol * and word-boundary marker #. The labels on the arcs leaving

g are schematic, and need to be expanded by individual words in the lexicon. # denOteS a Wo rd

boundary.

English Spelling

Getting back to fox+s = foxes

Name Description of Rule Example

Consonant 1-letter consonant doubled before -ing/-ed beg/begging
doubling

E deletion Silent e dropped before -ing and -ed make/making

E insertion e added after -s,-z,-x,-ch, -sh before -s watch/watches

Y replacement -y changes to -ie before -5, -i before -ed try/tries

K insertion verbs ending with vowel + -c add -k panic/panicked

The E Insertion Rule as a FST

Generate a normally
spelled word from an
abstract representation of
the morphemes:

Input: fox/s# (fox"es#)
Output: foxes# (foxcesH)

The transducer for the E-insertion rule of (3.4), extended from a similar trans-
ducer in Antworth (1990). We additionally need to delete the # symbol from the surface string;
this can be done either by interpreting the symbol # as the pair #:¢, or by postprocessing the
output to remove word boundaries.

S

e—>e/ X » N\ s#
Z

The E Insertion Rule as a FST

Parse a normally spelled
word into an abstract
representation of the

y morphemes:

€.e S
"“-_\‘ Input: foxes# (foxeces#)

" Output: fox"s# (fox"es#)

#, othe

_—

The transducer for the E-insertion rule of (3.4), extended from a similar trans-
ducer in Antworth (1990). We additionally need to delete the # symbol from the surface string;
this can be done either by interpreting the symbol # as the pair #:¢, or by postprocessing the
output to remove word boundaries.

S

e—>e/ X » N\ s#
Z

Combining FSTs

:

flo!| x |+N|[+PL
LEXICON-FST
§ flolx |2 s|#
ESE,| 5. 4] FSE,
§ flo|x|e|s

Figure 3.19

Generating or parsing with FST lexicon and rules

parse

}

generate

FST Operations

LEXICON-FST

4

§

LEXICON-FST

{

FST, vee

§

e

FST, }memec:

FST, rsr ~esryn..nF

STa

compose

LEXICON-FST

o
FST,

§

{

§

{

§

19010 WAY Intersection and composition of transducers.

Input: fox +N +pl
Output: foxes#

Two-level Morphology

upper side or underlying form ta|k+PaSt

|

i

lower side or surface form ta I k@d

Language Type Comparison wrt FSTs

* Morphologies of all types can be analyzed using finite state methods.

* Some present more challenges than others:

* Analytic languages. Trivial, since there is little or no morphology (other than
compounding).

* Agglutinating languages. Straightforward—finite state morphology was
“made” for languages like this.

* Polysynthetic languages. Similar to agglutinating languages, but with blurred
lines between morphology and syntax.

e Fusional languages. Easy enough to analyze using finite state method as long
as one allows “morphemes” to have lots of simultaneous meanings and one is
willing to employ some additional tricks.

* Root-and-pattern languages. Require some very clever tricks.

The Good News

* More than almost any other problem in computational linguistics,
morphology is a solved problem (as long as you can afford to write
rules by hand).

* Finite state methods provide a simple and powerful means of
generating and analyzing words (as well as the phonological
alternations that accompany word formation/inflection).

* Finite state morphology is one of the great successes of natural
language processing.

* One brilliant aspect of using FSTs for morphology: the can
handle both and

Two major classes of approaches

* Linguistic approaches:

* Segmenting into words that make sense with grammars/meanings
* Segmenting into subword units that make sense with grammars/meanings

* Technological approaches:

* Segmenting into words to make processing efficient/better
* Segmenting into subwords to make processing efficient/better

We will look at both; linguistic approaches matter more if later stages
involve parsing and/or semantics

Stemming (“Poor Man’s Morphology”)

Input: a word
Output: the word’s stem (approximately)

Examples from the Porter stemmer:
*-SSes — -SS

*-ies 2> i

*-SS > S

no
noah

nob
nobility
nobis
noble
nobleman
noblemen
nobleness
nobler
nobles
noblesse
noblest
nobly
nobody
noces
nod
nodded
nodding
noddle
noddles
noddy

nods

no
noah

nob

nobil
nobi

nobl
nobleman
noblemen
nobl
nobler
nobl
nobless
noblest
nobli
nobodi
noce

nod

nod

nod
noddl|
noddl|
noddi

nod

Subword segmentation: motivation:

* Neural systems typically use a fixed vocabulary
* Preferably a relatively small fixed vocabulary

* Real world contains very many words
* New words all the time: doomscrolling, quarenteen; shrinkflation, meatspace
* For morphologically rich languages, even more so
e But most of them are rare (Zipf’s Law)

* Note that infrequent words do not have good corpus statistics

* So, fix the size of vocabulary, start with single characters, and learn
most frequent words, and useful subword segments for the rest

Unsupervised subword segmentation

Instead of
* white-space segmentation
* single-character segmentation

Use the data to tell us how to tokenize.

Subword segmentation/tokenization (because tokens can be parts
of words as well as whole words)

Subword tokenization

* Three common algorithms:
* Byte-Pair Encoding (BPE) (Sennrich et al., 2016)
* Unigram language modeling tokenization (Kudo, 2018)
* WordPiece (Schuster and Nakajima, 2012)

* All have 2 parts:

* A token learner that takes a raw training corpus and induces a vocabulary (a
set of tokens).

* A token segmenter that takes a raw test sentence and tokenizes it according to
that vocabulary.

Byte Pair Encoding (BPE) token learner

Let vocabulary be the set of all individual characters
={A,B,C,D,..,a,b,cd..}

* Repeat:

* Choose the two symbols that are most frequently adjacent in the training
corpus (say 'A’, 'B")

* Add a new merged symbol 'AB' to the vocabulary

* Replace every adjacent 'A' 'B' in the corpus with 'AB".

e Until Kk merges have been done. (Or until you hit vocabulary size.)

BPE token learner algorithm

function BYTE-PAIR ENCODING(strings C, number of merges k) returns vocab V

V<—all unique characters in C # initial set of tokens is characters
fori=1tok do # merge tokens til k£ times
11, tr <—Most frequent pair of adjacent tokens in C
tvpw <1 + IR # make new token by concatenating
Vi~V + tyew # update the vocabulary
Replace each occurrence of 7, tg in C with tyzy # and update the corpus

return V

Byte Pair Encoding (BPE) Addendum

Most subword algorithms are run inside space-separated tokens.

So we commonly first add a special end-of-word symbol' ' before
space in training corpus

Next, separate into letters.

BPE token learner

Original (very fascinating®®’) corpus:

low low low low low lowest lowest newer newer newer nhewer newer newer wider
wider wider new new

Add end-of-word tokens, resulting in this vocabulary:

vocabulary
-, d, e, i, 1, n, o, r, s, t, w

BPE token learner

corpus vocabulary

5 l ow _ _,d, e, 1, 1, n, o, r, s, t, w
2 lowest _

6 newer _

3 wider _

2 new_

Merge e r to er

corpus vocabulary

5 l ow _ ., d, e, i, 1, n, o, r, s, t, w, er
2 lowest_

6 newer _

3 wider _

2 new_

BPE

corpus

DD W O\ D W
S, = B

™ - ® O O
= Q=5 = =

Merge er
corpus

DD W O\ DN
S, = B85 H

™ - ™ O O
= Q= = =

e st _
er _
er __

toer

e st _
er__
er__

vocabulary
—, d, e, 1, 1, n, o, r, s, t, w,

vocabulary
_,d,e,1,1,n,0,1,s,t,w, er, er__

er

BPE

corpus
5 1
2 1
6 n
3 W
2 n

Merge n e to ne

corpus
1l ow

O W O\ D

lowest _
ne w er__
wider_

ne

™ - ® O O
= 0 = = =

W

e st _
er__
er__

vocabulary
,d,e,i,1,n, 0,1, s, t,w, er, er

vocabulary
,d,e,1,1,n,0, 1, s, t,w, er, er, ne

BPE

The next merges are:

Merge

(ne, w)

(1, o)
(lo, w)
(new, er_)
(low, _)

Current Vocabulary

—,d,
., d,
—,d,
., d,
—,d,

€,

i,1,n, o, r,
1,1, n, 0, r,
1,1, n, 0, r,
i,1,n,0,r,
1,1, n, 0, r,

S, T, W,
S, T, w,
S, T, W,
S, t,w,
S, T, W,

er, er__, ne, new
er, er__, ne, new, lo

er, er__, ne, new, lo, low

er, er__, ne, new, lo, low, newer__

er, er__, ne, new, lo, low, newer_, low__

BPE token segmenter algorithm

On the test data, run each merge learned from the training data:
e Greedily
* In the order we learned them
* (test frequencies don't play a role)

So: merge every e r to er, then merge er _to er_, etc.

* Result:
* Testset"newer " would be tokenized as a full word
* Testset"lower " would be two tokens: "low er_"

Properties of BPE tokens

Usually include frequent words

And frequent subwords
* Which are often morphemes like -est or —er

Questions?

