
Word Segmentation
and Morphology

11-711 Advanced NLP
November 2022

(Some slides adapted from Lori Levin, David Mortenson, and J&M)

Two major classes of approaches

• Linguistic approaches:
• Segmenting into words that make sense with grammars/meanings
• Segmenting into subword units that make sense with grammars/meanings

• Technological approaches:
• Segmenting into words to make processing efficient/better
• Segmenting into subwords to make processing efficient/better

We will look at both; linguistic approaches matter more if later stages
involve parsing and/or semantics

But first: What is a word?

But first: What is a word?
• The things that are in the dictionary?

• But how did the lexicographers decide what to put in the dictionary?

But first: What is a word?
• The things that are in the dictionary?

• But how did the lexicographers decide what to put in the dictionary?

• The things between spaces and punctuation?

But first: What is a word?
• The things that are in the dictionary?

• But how did the lexicographers decide what to put in the dictionary?

• The things between spaces and punctuation?
• The smallest unit that can be uttered in isolation?

• You could say this word in isolation: Unimpressively
• This one too: impress
• But you probably wouldn’t say these in isolation, unless you were talking

about morphology:
• un
• ive
• ly

So what is a word?

• Can get pretty tricky:
• didn’t
• would’ve
• gonna
• shoulda woulda coulda
• Ima
• blackboard (vs. school board)
• baseball (vs. golf ball)
• the person who left’s hat; Jim and Gregg’s apartment
• acct.
• CMU

About 1000 pages. $139.99

You don’t have to read it.

The point is that it takes 1000 pages
just to survey the issues related to
what words are.

So what is a word?

• It is up to you or the software you use for processing words.
• Take linguistics classes.
• Make good decisions in software design and engineering.

Tokenization

Tokenization
• Some Asian languages have obvious issues:
利比亚“全国过渡委员会”执行委员会主席凯卜22日在
首都的黎波里公布“过渡政府”内阁名单，宣告过渡政
府正式成立。

Tokenization
• Some Asian languages have obvious issues:
利比亚“全国过渡委员会”执行委员会主席凯卜22日在
首都的黎波里公布“过渡政府”内阁名单，宣告过渡政
府正式成立。

• But German too: Noun-noun compounds:
Gesundheitsversicherungsgesellschaften

Tokenization
• Some Asian languages have obvious issues:
利比亚“全国过渡委员会”执行委员会主席凯卜22日在
首都的黎波里公布“过渡政府”内阁名单，宣告过渡政
府正式成立。

• But German too: Noun-noun compounds:
Gesundheits-versicherungs-gesellschaften (health

insurance companies)

Tokenization
• Some Asian languages have obvious issues:
利比亚“全国过渡委员会”执行委员会主席凯卜22日在
首都的黎波里公布“过渡政府”内阁名单，宣告过渡政
府正式成立。

• But German too: Noun-noun compounds:
Gesundheitsversicherungsgesellschaften

• Spanish clitics: Darmelo

Tokenization
• Some Asian languages have obvious issues:
利比亚“全国过渡委员会”执行委员会主席凯卜22日在
首都的黎波里公布“过渡政府”内阁名单，宣告过渡政
府正式成立。

• But German too: Noun-noun compounds:
Gesundheitsversicherungsgesellschaften

• Spanish clitics: Dar-me-lo (To give me it)

Tokenization
• Some Asian languages have obvious issues:
利比亚“全国过渡委员会”执行委员会主席凯卜22日在
首都的黎波里公布“过渡政府”内阁名单，宣告过渡政
府正式成立。

• But German too: Noun-noun compounds:
Gesundheitsversicherungsgesellschaften

• Spanish clitics: Darmelo
• Even English has issues, to a smaller degree: Gregg

and Bob’s house

Tokenization
Input: raw text

Dr. Smith said tokenization of English is “harder than you’ve thought.”
When in New York, he paid $12.00 a day for lunch and wondered what it would
be like to work for AT&T or Google, Inc.

Output from Stanford Parser: http://nlp.stanford.edu:8080/parser/index.jsp
with part-of-speech tags:

Dr./NNP Smith/NNP said/VBD tokenization/NN of/IN English/NNP
is/VBZ ``/`` harder/JJR than/IN you/PRP 've/VBP thought/VBN ./.
''/’’
When/WRB in/IN New/NNP York/NNP ,/, he/PRP paid/VBD $/$ 12.00/CD
a/DT day/NN for/IN lunch/NN and/CC wondered/VBD what/WP it/PRP
would/MD be/VB like/JJ to/TO work/VB for/IN AT&T/NNP or/CC
Google/NNP ,/, Inc./NNP ./.

http://nlp.stanford.edu:8080/parser/index.jsp

Tokenization approaches

• Traditional:
• For languages with word spaces: spaces, punctuation, plus rules
• For Chinese etc: Large dictionaries, punctuation, plus rules

• SentencePiece:
• For Chinese etc: Use subword segmentation to find the words without pre-

tokenization
(We’ll see subword segmentation later today.)

Sentence Segmentation

• !, ? mostly unambiguous but period “.” is very ambiguous:
• Sentence boundary
• Abbreviations like Inc. or Dr.
• Numbers like .02% or 4.3

• Common algorithm: Tokenize first: use rules or ML to classify a period as
either (a) part of the word or (b) a sentence-boundary.
• An abbreviation dictionary can help

• Sentence segmentation can then often be done by rules based on this
tokenization.

Two major classes of approaches

• Linguistic approaches:
• Segmenting into words that make sense with grammars/meanings
• Segmenting into subword units that make sense with grammars/meanings

• Technological approaches:
• Segmenting into words to make processing efficient/better
• Segmenting into subwords to make processing efficient/better

We will look at both; linguistic approaches matter more if later stages
involve parsing and/or semantics

Linguistic Morphology

What is Linguistic Morphology?

• Morphology is the study of the internal structure of words.

• Derivational morphology. How new words are created from existing words.
• [grace]
• [[grace]ful]
• [un[grace]ful]]

• Inflectional morphology. How features relevant to the syntactic context of a word are
marked on that word.
• This example illustrates number (singular and plural) and tense (present and past).
• Green indicates irregular. Blue indicates zero marking of inflection. Red indicates regular inflection.
• This student walks.
• These students walk.
• These students walked.

• Compounding. Creating new words by combining existing words
• With or without spaces: surfboard, golf ball, blackboard

Morphemes

• Morphemes. Minimal pairings of form and meaning.

• Roots. The “core” of a word that carries its basic meaning.
• apple : ‘apple’
• walk : ‘walk’

• Affixes (prefixes, suffixes, infixes, and circumfixes). Morphemes that are
added to a base (a root or stem) to perform either derivational or inflectional
functions.
• un- : ‘NEG’
• -s : ‘PLURAL’

Lexicons and Parts of Speech

• There are many thousands of root words in a language
• They naturally divide into classes (Parts of Speech, “POS”) based on:

• the morphological patterns they participate in
• the way they interact in the grammar (syntax) of the language
• the kinds of meanings they express

• So typically there is a lexicon, a database containing root words, their
POS, any other idiosyncratic info, and possibly their semantics

Language Typology

Types of Languages:

• In order of morphological complexity:
• Isolating (or Analytic)
• Fusional (or Inflecting)
• Agglutinative
• Polysynthetic
• Others

Isolating Languages: Chinese
Little morphology other than compounding

• Chinese inflection
• few affixes (prefixes and suffixes):

• 们： 我们，你们， 他们，。。。同志们
mén:				wǒmén,	nǐmén,					tāmén, tóngzhìmén
plural:	we,										you	(pl.),	they											comrades,	LGBT	people

• “suffixes”	that	mark	aspect:	着 -zhě ‘continuous	aspect’

• Chinese	derivation
• 艺术家 yìshùjiā ‘artist’

• Chinese is a champion in the realm of compounding—up to 80% of
Chinese words are actually compounds.

毒 + 贩 → 毒贩

dú fàn dúfàn

‘poison, drug’ ‘vendor’ ‘drug trafficker’

Agglutinative Languages: Swahili
Verbs in Swahili have an average of 4-5 morphemes, http://wals.info/valuesets/22A-swa

Swahili English

mtu alilala ‘The person slept’

mtu atalala ‘The person will sleep’

watu walilala ‘The people slept’

watu watalala ‘The people will sleep’

• Orange prefixes mark noun class (like gender, except Swahili has nine instead of two or
three).
• Verbs agree with nouns in noun class.
• Adjectives also agree with nouns.
• Very helpful in parsing.

• Black prefixes indicate tense.

Turkish
Example of extreme agglutination
But most Turkish words have around three morphemes

uygarlaştıramadıklarımızdanmışsınızcasına
“(behaving) as if you are among those whom we were not able to civilize”

uygar “civilized”
+laş “become”
+tır “cause to”
+ama “not able”
+dık past participle
+lar plural
+ımız first person plural possessive (“our”)
+dan ablative case (“from/among”)
+mış past
+sınız second person plural (“y’all”)
+casına finite verb → adverb (“as if”)

Operationalization

• operate (opus/opera + ate)
• ion
• al
• ize
• ate
• ion

Polysynthetic Languages: Yupik

• Polysynthetic morphologies allow the creation of full “sentences” by
morphological means.
• They often allow the incorporation of nouns into verbs.
• They may also have affixes that attach to verbs and take the place of

nouns.
• Yupik Eskimo
untu-ssur-qatar-ni-ksaite-ngqiggte-uq
reindeer-hunt-FUT-say-NEG-again-3SG.INDIC
‘He had not yet said again that he was going to hunt reindeer.’

Fusional Languages: Spanish

Singular Plural

1st 2nd 3rd
formal 2nd

1st 2nd 3rd

Present am-o am-as am-a am-a-mos am-áis am-an

Imperfect am-ab-a am-ab-as am-ab-a am-áb-a-mos am-ab-ais am-ab-an

Preterit am-é am-aste am-ó am-a-mos am-asteis am-aron

Future am-aré am-arás am-ará am-are-mos am-aréis am-arán

Conditional am-aría am-arías am-aría am-aría-mos am-aríais am-arían

Indo-European: 4000BC

From Wikipedia

Indo-European: 3000BC

Indo-European: 2000BC

Indo-European: 500BC

Indo-European: “hand”

One word in Mandarin may actually originate
from PIE:

蜜 “honey”
meed fermented honey

A Brief History of English

• 900,000 BC? Humans invade British Isles
• 800 BC? Celts invade (Gaelic) [first Indo-Europeans there]
• 40 AD Romans invade (Latin)
• 410 AD Anglo-Saxons invade (West German)
• 790 AD Vikings invade (North German)
• 1066 AD Normans invade (Norman French/Latin)
• The English spend a few hundred years invading rest of British Isles
• A little later, British start invading everyone else

• North America, India, China, …

Root-and-Pattern Morphology: Arabic

• Root-and-pattern. A special kind of fusional morphology found in
Arabic, Hebrew, and their cousins.
• Root usually consists of a sequence of consonants.
• Words are derived and, to some extent, inflected by patterns of

vowels intercalated among the root consonants.
• kitaab ‘book’
• kaatib ‘writer; writing’
• maktab ‘office; desk’
• maktaba ‘library’

Other Non-Concatenative Morphological
Processes
Non-concatenative morphology involves operations other than the
concatenation of affixes with bases.
• Infixation. A morpheme is inserted inside another morpheme instead of

before or after it.
• Reduplication. Can be prefixing, suffixing, and even infixing.

• Tagalog:
• sulat (write, imperative)
• susulat (reduplication) (write, future)
• sumulat (infixing) (write, past)
• sumusulat (infixing and reduplication) (write, present)

• Apophony, including the umlaut in English tooth → teeth; subtractive
morphology, including the truncation in English nickname formation
(David → Dave); and so on.
• Tone change; stress shift. And more...

Type-Token Curves
Finnish is agglutinative
Iñupiaq is polysynthetic

0

1000

2000

3000

4000

5000

6000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Ty
pe
s

Tokens

Type-Token Curves

English

Arabic

Hocąk

Inupiaq

Finnish

Types and Tokens:
“I like to walk. I am
walking now. I took a
long walk earlier too.”

The type walk occurs
twice. So there are two
tokens of the type walk.

Walking is a different
type that occurs once.

Morphological Processing

Recognizing the words of a language

• Input: a string (from some alphabet)
• Output: is it a legal word? (yes or no)

Morphology information sources

• Lexicon of roots, plus list of affixes
• Morphotactics: rules for how morphemes combine
• Spelling/pronunciation rules

fox+Pl
fox –s (or fox^s)
foxes

goose+Pl
geese
geese

stem+feature
morpheme sequence
surface form

FSA for English Noun inflections

Lexicon:

Note: “fox” becomes plural by adding “es” not “s”. We will get to that later.

Finite-State Automaton

• Q: a finite set of states
• q0 ∈ Q: a special start state
• F ⊆ Q: a set of final states
• Σ: a finite alphabet
• Transitions:

• Encodes a set of strings that can be recognized by following
paths from q0 to some state in F.

qi
qjs ∈ Σ*

...
...

FSA for English Adjective derivations

But note that this accepts words like “unbig”.

Big, bigger, biggest
Happy, happier, happiest, happily
Unhappy, unhappier, unhappiest, unhappily
Clear, clearer, clearest, clearly
Unclear, unclearly

Cool, cooler, coolest, coolly
Red, redder, reddest
Real, unreal, really

FSA for English Derivational Morphology

How big do these automata get? Reasonable coverage of a language takes an expert about two to four
months.

What does it take to be an expert? Study linguistics to get used to all the common and not-so-common
things that happen, and then practice.

Morphological Parsing

Input: a word
Output: the word’s stem(s) and features expressed by other
morphemes.

Example: geese → goose +N +Pl
gooses → goose +V +3P +Sg
dog → {dog +N +Sg, dog +V}
leaves → {leaf +N +Pl, leave +V +3P +Sg}

Finite State Transducers

• Q: a finite set of states
• q0 ∈ Q: a special start state
• F ⊆ Q: a set of final states
• Σ and Δ: two finite alphabets
• Transitions:

qi
qj

s : t

s ∈ Σ* and t ∈ Δ*

...
...

Morphological Parsing with FSTs

Note “same symbol”
shorthand.

^ denotes a
morpheme boundary.

denotes a word
boundary.

English Spelling
Getting back to fox+s = foxes

The E Insertion Rule as a FST

✏ ! e/

8
<

:

s
x
z

9
=

; ^ s#

Generate a normally
spelled word from an
abstract representation of
the morphemes:

Input: fox^s# (fox^εs#)
Output: foxes# (foxεes#)

The E Insertion Rule as a FST

✏ ! e/

8
<

:

s
x
z

9
=

; ^ s#

Parse a normally spelled
word into an abstract
representation of the
morphemes:

Input: foxes# (foxεes#)
Output: fox^s# (fox^εs#)

Combining FSTs
parse

generate

FST Operations

Input: fox +N +pl
Output: foxes#

Two-level Morphology

talk+Past

talked

FST

upper side or underlying form

lower side or surface form

Language Type Comparison wrt FSTs

• Morphologies of all types can be analyzed using finite state methods.
• Some present more challenges than others:

• Analytic languages. Trivial, since there is little or no morphology (other than
compounding).

• Agglutinating languages. Straightforward—finite state morphology was
“made” for languages like this.

• Polysynthetic languages. Similar to agglutinating languages, but with blurred
lines between morphology and syntax.

• Fusional languages. Easy enough to analyze using finite state method as long
as one allows “morphemes” to have lots of simultaneous meanings and one is
willing to employ some additional tricks.

• Root-and-pattern languages. Require some very clever tricks.

The Good News

• More than almost any other problem in computational linguistics,
morphology is a solved problem (as long as you can afford to write
rules by hand).
• Finite state methods provide a simple and powerful means of

generating and analyzing words (as well as the phonological
alternations that accompany word formation/inflection).
• Finite state morphology is one of the great successes of natural

language processing.
• One brilliant aspect of using FSTs for morphology: the same code can

handle both analysis and generation.

Two major classes of approaches

• Linguistic approaches:
• Segmenting into words that make sense with grammars/meanings
• Segmenting into subword units that make sense with grammars/meanings

• Technological approaches:
• Segmenting into words to make processing efficient/better
• Segmenting into subwords to make processing efficient/better

We will look at both; linguistic approaches matter more if later stages
involve parsing and/or semantics

Stemming (“Poor Man’s Morphology”)

Input: a word
Output: the word’s stem (approximately)

Examples from the Porter stemmer:
•-sses → -ss
•-ies → i
•-ss → s

no
noah
nob

nobility
nobis
noble

nobleman

noblemen
nobleness

nobler
nobles

noblesse

noblest
nobly

nobody
noces

nod
nodded
nodding
noddle

noddles
noddy
nods

no
noah
nob

nobil
nobi
nobl
nobleman

noblemen
nobl
nobler
nobl
nobless

noblest
nobli
nobodi
noce

nod
nod
nod
noddl

noddl
noddi
nod

Subword segmentation: motivation:

• Neural systems typically use a fixed vocabulary
• Preferably a relatively small fixed vocabulary

• Real world contains very many words
• New words all the time: doomscrolling, quarenteen; shrinkflation, meatspace
• For morphologically rich languages, even more so
• But most of them are rare (Zipf’s Law)

• Note that infrequent words do not have good corpus statistics

• So, fix the size of vocabulary, start with single characters, and learn
most frequent words, and useful subword segments for the rest

Unsupervised subword segmentation

Instead of
• white-space segmentation
• single-character segmentation

Use the data to tell us how to tokenize.

Subword segmentation/tokenization (because tokens can be parts
of words as well as whole words)

Subword tokenization

• Three common algorithms:
• Byte-Pair Encoding (BPE) (Sennrich et al., 2016)
• Unigram language modeling tokenization (Kudo, 2018)
• WordPiece (Schuster and Nakajima, 2012)

• All have 2 parts:
• A token learner that takes a raw training corpus and induces a vocabulary (a

set of tokens).
• A token segmenter that takes a raw test sentence and tokenizes it according to

that vocabulary.

Byte Pair Encoding (BPE) token learner

Let vocabulary be the set of all individual characters
= {A, B, C, D,…, a, b, c, d….}

• Repeat:
• Choose the two symbols that are most frequently adjacent in the training

corpus (say 'A', 'B')
• Add a new merged symbol 'AB' to the vocabulary
• Replace every adjacent 'A' 'B' in the corpus with 'AB'.

• Until k merges have been done. (Or until you hit vocabulary size.)

BPE token learner algorithm2.4 • TEXT NORMALIZATION 19

function BYTE-PAIR ENCODING(strings C, number of merges k) returns vocab V

V all unique characters in C # initial set of tokens is characters
for i = 1 to k do # merge tokens til k times

tL, tR Most frequent pair of adjacent tokens in C
tNEW tL + tR # make new token by concatenating
V V + tNEW # update the vocabulary
Replace each occurrence of tL, tR in C with tNEW # and update the corpus

return V

Figure 2.13 The token learner part of the BPE algorithm for taking a corpus broken up
into individual characters or bytes, and learning a vocabulary by iteratively merging tokens.
Figure adapted from Bostrom and Durrett (2020).

from the training data, greedily, in the order we learned them. (Thus the frequencies
in the test data don’t play a role, just the frequencies in the training data). So first
we segment each test sentence word into characters. Then we apply the first rule:
replace every instance of e r in the test corpus with r, and then the second rule:
replace every instance of er in the test corpus with er , and so on. By the end,
if the test corpus contained the word n e w e r , it would be tokenized as a full
word. But a new (unknown) word like l o w e r would be merged into the two
tokens low er .

Of course in real algorithms BPE is run with many thousands of merges on a very
large input corpus. The result is that most words will be represented as full symbols,
and only the very rare words (and unknown words) will have to be represented by
their parts.

2.4.4 Word Normalization, Lemmatization and Stemming
Word normalization is the task of putting words/tokens in a standard format, choos-normalization
ing a single normal form for words with multiple forms like USA and US or uh-huh
and uhhuh. This standardization may be valuable, despite the spelling information
that is lost in the normalization process. For information retrieval or information
extraction about the US, we might want to see information from documents whether
they mention the US or the USA.

Case folding is another kind of normalization. Mapping everything to lowercase folding

case means that Woodchuck and woodchuck are represented identically, which is
very helpful for generalization in many tasks, such as information retrieval or speech
recognition. For sentiment analysis and other text classification tasks, information
extraction, and machine translation, by contrast, case can be quite helpful and case
folding is generally not done. This is because maintaining the difference between,
for example, US the country and us the pronoun can outweigh the advantage in
generalization that case folding would have provided for other words.

For many natural language processing situations we also want two morpholog-
ically different forms of a word to behave similarly. For example in web search,
someone may type the string woodchucks but a useful system might want to also
return pages that mention woodchuck with no s. This is especially common in mor-
phologically complex languages like Russian, where for example the word Moscow
has different endings in the phrases Moscow, of Moscow, to Moscow, and so on.

Lemmatization is the task of determining that two words have the same root,
despite their surface differences. The words am, are, and is have the shared lemma

Byte Pair Encoding (BPE) Addendum

Most subword algorithms are run inside space-separated tokens.

So we commonly first add a special end-of-word symbol '__' before
space in training corpus

Next, separate into letters.

BPE token learner

18 CHAPTER 2 • REGULAR EXPRESSIONS, TEXT NORMALIZATION, EDIT DISTANCE

The algorithm is usually run inside words (not merging across word boundaries),
so the input corpus is first white-space-separated to give a set of strings, each corre-
sponding to the characters of a word, plus a special end-of-word symbol , and its
counts. Let’s see its operation on the following tiny input corpus of 18 word tokens
with counts for each word (the word low appears 5 times, the word newer 6 times,
and so on), which would have a starting vocabulary of 11 letters:

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w
2 l o w e s t
6 n e w e r
3 w i d e r
2 n e w

The BPE algorithm first count all pairs of adjacent symbols: the most frequent
is the pair e r because it occurs in newer (frequency of 6) and wider (frequency of
3) for a total of 9 occurrences1. We then merge these symbols, treating er as one
symbol, and count again:

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er
2 l o w e s t
6 n e w er
3 w i d er
2 n e w

Now the most frequent pair is er , which we merge; our system has learned
that there should be a token for word-final er, represented as er :

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er, er
2 l o w e s t
6 n e w er
3 w i d er
2 n e w

Next n e (total count of 8) get merged to ne:
corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er, er , ne
2 l o w e s t
6 ne w er
3 w i d er
2 ne w

If we continue, the next merges are:
Merge Current Vocabulary
(ne, w) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new
(l, o) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo
(lo, w) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low
(new, er) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer
(low,) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer , low

Once we’ve learned our vocabulary, the token parser is used to tokenize a test
sentence. The token parser just runs on the test data the merges we have learned

1 Note that there can be ties; we could have instead chosen to merge r first, since that also has a
frequency of 9.

Original (very fascinating🙄) corpus:

low low low low low lowest lowest newer newer newer newer newer newer wider
wider wider new new

Add end-of-word tokens, resulting in this vocabulary:
representation

BPE token learner

18 CHAPTER 2 • REGULAR EXPRESSIONS, TEXT NORMALIZATION, EDIT DISTANCE

The algorithm is usually run inside words (not merging across word boundaries),
so the input corpus is first white-space-separated to give a set of strings, each corre-
sponding to the characters of a word, plus a special end-of-word symbol , and its
counts. Let’s see its operation on the following tiny input corpus of 18 word tokens
with counts for each word (the word low appears 5 times, the word newer 6 times,
and so on), which would have a starting vocabulary of 11 letters:

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w
2 l o w e s t
6 n e w e r
3 w i d e r
2 n e w

The BPE algorithm first count all pairs of adjacent symbols: the most frequent
is the pair e r because it occurs in newer (frequency of 6) and wider (frequency of
3) for a total of 9 occurrences1. We then merge these symbols, treating er as one
symbol, and count again:

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er
2 l o w e s t
6 n e w er
3 w i d er
2 n e w

Now the most frequent pair is er , which we merge; our system has learned
that there should be a token for word-final er, represented as er :

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er, er
2 l o w e s t
6 n e w er
3 w i d er
2 n e w

Next n e (total count of 8) get merged to ne:
corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er, er , ne
2 l o w e s t
6 ne w er
3 w i d er
2 ne w

If we continue, the next merges are:
Merge Current Vocabulary
(ne, w) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new
(l, o) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo
(lo, w) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low
(new, er) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer
(low,) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer , low

Once we’ve learned our vocabulary, the token parser is used to tokenize a test
sentence. The token parser just runs on the test data the merges we have learned

1 Note that there can be ties; we could have instead chosen to merge r first, since that also has a
frequency of 9.

Merge e r to er

18 CHAPTER 2 • REGULAR EXPRESSIONS, TEXT NORMALIZATION, EDIT DISTANCE

The algorithm is usually run inside words (not merging across word boundaries),
so the input corpus is first white-space-separated to give a set of strings, each corre-
sponding to the characters of a word, plus a special end-of-word symbol , and its
counts. Let’s see its operation on the following tiny input corpus of 18 word tokens
with counts for each word (the word low appears 5 times, the word newer 6 times,
and so on), which would have a starting vocabulary of 11 letters:

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w
2 l o w e s t
6 n e w e r
3 w i d e r
2 n e w

The BPE algorithm first count all pairs of adjacent symbols: the most frequent
is the pair e r because it occurs in newer (frequency of 6) and wider (frequency of
3) for a total of 9 occurrences1. We then merge these symbols, treating er as one
symbol, and count again:

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er
2 l o w e s t
6 n e w er
3 w i d er
2 n e w

Now the most frequent pair is er , which we merge; our system has learned
that there should be a token for word-final er, represented as er :

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er, er
2 l o w e s t
6 n e w er
3 w i d er
2 n e w

Next n e (total count of 8) get merged to ne:
corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er, er , ne
2 l o w e s t
6 ne w er
3 w i d er
2 ne w

If we continue, the next merges are:
Merge Current Vocabulary
(ne, w) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new
(l, o) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo
(lo, w) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low
(new, er) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer
(low,) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer , low

Once we’ve learned our vocabulary, the token parser is used to tokenize a test
sentence. The token parser just runs on the test data the merges we have learned

1 Note that there can be ties; we could have instead chosen to merge r first, since that also has a
frequency of 9.

BPE

Merge er _ to er_

18 CHAPTER 2 • REGULAR EXPRESSIONS, TEXT NORMALIZATION, EDIT DISTANCE

The algorithm is usually run inside words (not merging across word boundaries),
so the input corpus is first white-space-separated to give a set of strings, each corre-
sponding to the characters of a word, plus a special end-of-word symbol , and its
counts. Let’s see its operation on the following tiny input corpus of 18 word tokens
with counts for each word (the word low appears 5 times, the word newer 6 times,
and so on), which would have a starting vocabulary of 11 letters:

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w
2 l o w e s t
6 n e w e r
3 w i d e r
2 n e w

The BPE algorithm first count all pairs of adjacent symbols: the most frequent
is the pair e r because it occurs in newer (frequency of 6) and wider (frequency of
3) for a total of 9 occurrences1. We then merge these symbols, treating er as one
symbol, and count again:

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er
2 l o w e s t
6 n e w er
3 w i d er
2 n e w

Now the most frequent pair is er , which we merge; our system has learned
that there should be a token for word-final er, represented as er :

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er, er
2 l o w e s t
6 n e w er
3 w i d er
2 n e w

Next n e (total count of 8) get merged to ne:
corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er, er , ne
2 l o w e s t
6 ne w er
3 w i d er
2 ne w

If we continue, the next merges are:
Merge Current Vocabulary
(ne, w) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new
(l, o) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo
(lo, w) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low
(new, er) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer
(low,) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer , low

Once we’ve learned our vocabulary, the token parser is used to tokenize a test
sentence. The token parser just runs on the test data the merges we have learned

1 Note that there can be ties; we could have instead chosen to merge r first, since that also has a
frequency of 9.

18 CHAPTER 2 • REGULAR EXPRESSIONS, TEXT NORMALIZATION, EDIT DISTANCE

The algorithm is usually run inside words (not merging across word boundaries),
so the input corpus is first white-space-separated to give a set of strings, each corre-
sponding to the characters of a word, plus a special end-of-word symbol , and its
counts. Let’s see its operation on the following tiny input corpus of 18 word tokens
with counts for each word (the word low appears 5 times, the word newer 6 times,
and so on), which would have a starting vocabulary of 11 letters:

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w
2 l o w e s t
6 n e w e r
3 w i d e r
2 n e w

The BPE algorithm first count all pairs of adjacent symbols: the most frequent
is the pair e r because it occurs in newer (frequency of 6) and wider (frequency of
3) for a total of 9 occurrences1. We then merge these symbols, treating er as one
symbol, and count again:

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er
2 l o w e s t
6 n e w er
3 w i d er
2 n e w

Now the most frequent pair is er , which we merge; our system has learned
that there should be a token for word-final er, represented as er :

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er, er
2 l o w e s t
6 n e w er
3 w i d er
2 n e w

Next n e (total count of 8) get merged to ne:
corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er, er , ne
2 l o w e s t
6 ne w er
3 w i d er
2 ne w

If we continue, the next merges are:
Merge Current Vocabulary
(ne, w) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new
(l, o) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo
(lo, w) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low
(new, er) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer
(low,) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer , low

Once we’ve learned our vocabulary, the token parser is used to tokenize a test
sentence. The token parser just runs on the test data the merges we have learned

1 Note that there can be ties; we could have instead chosen to merge r first, since that also has a
frequency of 9.

BPE

Merge n e to ne

18 CHAPTER 2 • REGULAR EXPRESSIONS, TEXT NORMALIZATION, EDIT DISTANCE

The algorithm is usually run inside words (not merging across word boundaries),
so the input corpus is first white-space-separated to give a set of strings, each corre-
sponding to the characters of a word, plus a special end-of-word symbol , and its
counts. Let’s see its operation on the following tiny input corpus of 18 word tokens
with counts for each word (the word low appears 5 times, the word newer 6 times,
and so on), which would have a starting vocabulary of 11 letters:

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w
2 l o w e s t
6 n e w e r
3 w i d e r
2 n e w

The BPE algorithm first count all pairs of adjacent symbols: the most frequent
is the pair e r because it occurs in newer (frequency of 6) and wider (frequency of
3) for a total of 9 occurrences1. We then merge these symbols, treating er as one
symbol, and count again:

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er
2 l o w e s t
6 n e w er
3 w i d er
2 n e w

Now the most frequent pair is er , which we merge; our system has learned
that there should be a token for word-final er, represented as er :

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er, er
2 l o w e s t
6 n e w er
3 w i d er
2 n e w

Next n e (total count of 8) get merged to ne:
corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er, er , ne
2 l o w e s t
6 ne w er
3 w i d er
2 ne w

If we continue, the next merges are:
Merge Current Vocabulary
(ne, w) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new
(l, o) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo
(lo, w) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low
(new, er) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer
(low,) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer , low

Once we’ve learned our vocabulary, the token parser is used to tokenize a test
sentence. The token parser just runs on the test data the merges we have learned

1 Note that there can be ties; we could have instead chosen to merge r first, since that also has a
frequency of 9.

18 CHAPTER 2 • REGULAR EXPRESSIONS, TEXT NORMALIZATION, EDIT DISTANCE

The algorithm is usually run inside words (not merging across word boundaries),
so the input corpus is first white-space-separated to give a set of strings, each corre-
sponding to the characters of a word, plus a special end-of-word symbol , and its
counts. Let’s see its operation on the following tiny input corpus of 18 word tokens
with counts for each word (the word low appears 5 times, the word newer 6 times,
and so on), which would have a starting vocabulary of 11 letters:

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w
2 l o w e s t
6 n e w e r
3 w i d e r
2 n e w

The BPE algorithm first count all pairs of adjacent symbols: the most frequent
is the pair e r because it occurs in newer (frequency of 6) and wider (frequency of
3) for a total of 9 occurrences1. We then merge these symbols, treating er as one
symbol, and count again:

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er
2 l o w e s t
6 n e w er
3 w i d er
2 n e w

Now the most frequent pair is er , which we merge; our system has learned
that there should be a token for word-final er, represented as er :

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er, er
2 l o w e s t
6 n e w er
3 w i d er
2 n e w

Next n e (total count of 8) get merged to ne:
corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er, er , ne
2 l o w e s t
6 ne w er
3 w i d er
2 ne w

If we continue, the next merges are:
Merge Current Vocabulary
(ne, w) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new
(l, o) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo
(lo, w) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low
(new, er) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer
(low,) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer , low

Once we’ve learned our vocabulary, the token parser is used to tokenize a test
sentence. The token parser just runs on the test data the merges we have learned

1 Note that there can be ties; we could have instead chosen to merge r first, since that also has a
frequency of 9.

BPE

The next merges are:

18 CHAPTER 2 • REGULAR EXPRESSIONS, TEXT NORMALIZATION, EDIT DISTANCE

The algorithm is usually run inside words (not merging across word boundaries),
so the input corpus is first white-space-separated to give a set of strings, each corre-
sponding to the characters of a word, plus a special end-of-word symbol , and its
counts. Let’s see its operation on the following tiny input corpus of 18 word tokens
with counts for each word (the word low appears 5 times, the word newer 6 times,
and so on), which would have a starting vocabulary of 11 letters:

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w
2 l o w e s t
6 n e w e r
3 w i d e r
2 n e w

The BPE algorithm first count all pairs of adjacent symbols: the most frequent
is the pair e r because it occurs in newer (frequency of 6) and wider (frequency of
3) for a total of 9 occurrences1. We then merge these symbols, treating er as one
symbol, and count again:

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er
2 l o w e s t
6 n e w er
3 w i d er
2 n e w

Now the most frequent pair is er , which we merge; our system has learned
that there should be a token for word-final er, represented as er :

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er, er
2 l o w e s t
6 n e w er
3 w i d er
2 n e w

Next n e (total count of 8) get merged to ne:
corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er, er , ne
2 l o w e s t
6 ne w er
3 w i d er
2 ne w

If we continue, the next merges are:
Merge Current Vocabulary
(ne, w) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new
(l, o) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo
(lo, w) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low
(new, er) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer
(low,) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer , low

Once we’ve learned our vocabulary, the token parser is used to tokenize a test
sentence. The token parser just runs on the test data the merges we have learned

1 Note that there can be ties; we could have instead chosen to merge r first, since that also has a
frequency of 9.

BPE token segmenter algorithm

On the test data, run each merge learned from the training data:
• Greedily
• In the order we learned them
• (test frequencies don't play a role)

So: merge every e r to er, then merge er _ to er_, etc.

• Result:
• Test set "n e w e r _" would be tokenized as a full word
• Test set "l o w e r _" would be two tokens: "low er_"

Properties of BPE tokens

Usually include frequent words

And frequent subwords
• Which are often morphemes like -est or –er

Questions?

