Semantic Parsing and First-Order Predicate Calculus

11-711 Advanced NLP

October 2021
(With thanks to Noah Smith)

Key Challenge of Meaning

- We actually say very little - much more is left unsaid, because it's assumed to be widely known.
- Examples:
- Reading newspaper stories
- Using restaurant menus
- Learning to use a new piece of software

Meaning Representation Languages

- Symbolic representation that does two jobs:
- Conveys the meaning of a sentence
- Represents (some part of) the world
- We're assuming a very literal, context-independent, inference-free version of meaning!
- Semantics vs. linguists' "pragmatics"
- "Meaning representation" vs some philosophers' use of the term "semantics".
- For now we'll use first-order logic. Also called First-Order Predicate Calculus. Logical form.

Representing NL meaning

- Fortunately, there has been a lot of work on this (since Aristotle, at least)
- Panini in India too
- Especially, formal mathematical logic since 1850s (!), starting with George Boole etc.
- Wanted to replace NL proofs with something more formal
- Deep connections to set theory

Model-Theoretic Semantics

- Model: a simplified representation of (some part of) the world: sets of objects, properties, relations (domain).
- Non-logical vocabulary: like variable and function names
- Each element denotes (maps to) a well-defined part of the model. ("Grounding".)
- Such a mapping is called an interpretation
- Logical vocabulary: used to compose larger meanings
- like reserved words in programming languages
- or function words in grammar

A Model

- Domain: Noah, Karen, Rebecca, Frederick, Green Mango, Casbah, Udipi, Thai, Mediterranean, Indian
- Properties: Green Mango and Udipi are crowded; Casbah is expensive
- Relations: Karen likes Green Mango, Frederick likes Casbah, everyone likes Udipi, Green Mango serves Thai, Casbah serves Mediterranean, and Udipi serves Indian
- n, k, r, f, g, c, u, t, m, i
- Crowded = $\{\mathrm{g}, \mathrm{u}\}$
- Expensive = \{c\}
- Likes $=\{(\mathrm{k}, \mathrm{g}),(\mathrm{f}, \mathrm{c}),(\mathrm{n}, \mathrm{u}),(\mathrm{k}, \mathrm{u}),(\mathrm{r}, \mathrm{u}),(\mathrm{f}, \mathrm{u})\}$
- Serves $=\{(\mathrm{g}, \mathrm{t}),(\mathrm{c}, \mathrm{m}),(\mathrm{u}, \mathrm{i})\}$

Some English

- Karen likes Green Mango and Frederick likes Casbah.
- Noah and Rebecca like the same restaurants.
- Noah likes expensive restaurants.
- Not everybody likes Green Mango.
- What we want is to be able to represent these statements in a way that lets us compare them to our model.
- Truth-conditional semantics: need operators and their meanings, given a particular model.

First-Order Logic

- Terms refer to elements of the domain: constants, functions, and variables
- Noah, SpouseOf(Karen), X
- Predicates are used to refer to sets and relations; predicate applied to a term is a Proposition
- Expensive(Casbah)
- Serves(Casbah, Mediterranean)
- Logical connectives (operators):

$$
\wedge \text { (and), } \vee(\text { or) }, \neg(\text { not }), \Rightarrow \text { (implies), } \ldots
$$

- Quantifiers

Logical operators: truth tables

\mathbf{A}	\mathbf{B}	$\mathbf{A} \wedge \mathbf{B}$	$\mathbf{A} \vee \mathbf{B}$	$\mathbf{A} \Rightarrow \mathbf{B}$
0	0	0	0	1
0	1	0	1	1
1	0	0	1	0
1	1	1	1	1

- Only really need \wedge and \neg

$$
\begin{aligned}
& " A \vee B " \text { is " } \neg A) \wedge(\neg B) " \\
& " A \Rightarrow B " \text { is " } \neg(A \wedge \neg B) \text { " or " } \neg A \vee B \text { " }
\end{aligned}
$$

Quantifiers in FOL

- Two ways to use variables:
- refer to one anonymous object from the domain (existential; \exists; "there exists")
- refer to all objects in the domain (universal; \forall; "for all")
- A restaurant near CMU serves Indian food $\exists x$ Restaurant(x) ^Near(x, CMU) ^ Serves(x, Indian)
- All expensive restaurants are far from campus $\forall x$ Restaurant $(x) \wedge$ Expensive $(x) \Rightarrow \neg \operatorname{Near}(x, C M U)$

Inference

- Big idea: extend the knowledge base, or check some proposition against the knowledge base.
- Forward chaining with modus ponens: given a and $a \Rightarrow$ β, we know β.
- Backward chaining takes a query β and looks for propositions α and $\alpha \Rightarrow \beta$ that would prove β.
- Not the same as backward reasoning (abduction).
- Used by Prolog
- Both are sound, neither is complete by itself.

Inference example

- Starting with these facts:

Restaurant(Udipi)

$\forall x$ Restaurant(x) \Rightarrow Likes(Noah, x)

- We can "turn a crank" and get this new fact:

Likes(Noah, Udipi)

FOL: Meta-theory

- Well-defined set-theoretic semantics
- Sound: can't prove false things
- Complete: can prove everything that logically follows from a set of axioms (e.g., with "resolution theorem prover")
- Well-behaved, well-understood
- Mission accomplished?

FOL: But there are also "Issues"

- "Meanings" of sentences are truth values.
- Extensional semantics (vs. Intensional); Closed World issue
- Only first-order (no quantifying over predicates [which the book does without comment!]).
- Not very good for "fluents" (time-varying things, realvalued quantities, etc.). Heard of Zeno?
- Brittle: anything follows from any contradiction(!)
- Goedel incompleteness: "This statement has no proof"!

FOL: But there are also "Issues"

- "Meanings" of sentences are truth values.
- Extensional semantics (vs. Intensional); Closed World issue
- Only first-order (no quantifying over predicates [which the book does without comment]).
- Not very good for "ffluents" (time-varying things, real-valued quantities, etc.)
- Brittle: anything follows from any contradiction(!)
- Goedel incompleteness: "This statement has no proof"!
- (Finite axiom sets are incomplete w.r.t. the real world.)
- So: Most systems use the FOL descriptive apparatus (with extensions) but not its inference mechanisms.

Lots More To Say About MRLs!

- See chapter 17 for more about:
- Representing events and states in FOL
- Dealing with optional arguments (e.g., "eat")
- Representing time
- Non-FOL approaches to meaning
- Interest in this topic (in NLP) waned during the 1990s and early 2000s.
- It has come back, with the rise of semi-structured databases like Wikipedia.

Connecting Syntax and Semantics

Semantic Parsing

- Goal: transform a NL statement into MRL (for now, FOL).
- Sometimes called "semantic analysis."
- As described earlier, this is the literal, contextindependent, inference-free meaning of the statement

"Literal, context-independent, inference-free" semantics

- Example: The ball is red
- Assigning a specific, grounded meaning involves deciding which ball is meant
- Would have to resolve indexical terms including pronouns, normal NPs, etc.
- Logical form allows compact representation of such indexical terms (vs. listing all members of the set)
- To retrieve a specific meaning, we combine LF with a particular context or situation (set of objects and relations)
- So LF is a function that maps an initial discourse situation into a new discourse situation (from situation semantics)

Compositionality

- The meaning of an NL phrase is determined by combining the meaning of its sub-parts.
- There are obvious exceptions ("hot dog," "straw man," "New York," etc.).
- Note: J\&M II book uses an event-based FOL representation, but l'm using a simpler one without events.
- Big idea: start with parse tree, build semantics on top using FOL with λ-expressions.

Extension: Lambda Notation

- A way of making anonymous functions.
- λx. (some expression mentioning x)
- Example: $\lambda x . N e a r(x, C M U)$
- Trickier example: $\lambda x . \lambda y . S e r v e s(y, x)$
- Lambda reduction: substitute for the variable.
- ($\lambda x . \operatorname{Near}(x, C M U))($ LulusNoodles) becomes Near(LulusNoodles, CMU)

Lambda reduction: order matters!

- $\boldsymbol{\lambda} \mathbf{x} . \boldsymbol{\lambda y} \cdot \operatorname{Serves}(\mathrm{y}, \mathrm{x})$ (Bill)(Jane) becomes $\lambda y . \operatorname{Serves(y,~Bill)(Jane)~}$ Then λy.Serves(y, Bill) (Jane) becomes Serves(Jane, Bill)
- $\boldsymbol{\lambda} \mathbf{y} . \boldsymbol{\lambda} \mathbf{x}$.Serves(y, x) (Bill)(Jane) becomes λx.Serves(Bill, x)(Jane) Then λx.Serves(Bill, x) (Jane) becomes Serves(Bill, Jane)

An Example

- Noah likes expensive restaurants.
- $\forall x$ Restaurant(x) \wedge Expensive(x) \Rightarrow Likes(Noah, x)

An Example

- Noah likes expensive restaurants.
- $\forall x$ Restaurant(x) \wedge Expensive(x) \Rightarrow Likes(Noah, x)

An Example

- Noah likes expensive restaurants.
- $\forall x$ Restaurant $(x) \wedge$ Expensive(x) \Rightarrow Likes(Noah, x$)$

An Example

- Noah likes expensive restaurants.
- $\forall x$ Restaurant $(x) \wedge$ Expensive(x) \Rightarrow Likes(Noah, x$)$

An Example

- Noah likes expensive restaurants.
- $\forall x$ Restaurant $(x) \wedge$ Expensive(x) \Rightarrow Likes(Noah, x$)$

An Example

- Noah likes expensive restaurants.
- $\forall x$ Restaurant $(x) \wedge$ Expensive(x) \Rightarrow Likes(Noah, x$)$

An Example

- Noah likes expensive restaurants.
- $\forall x$ Restaurant $(x) \wedge$ Expensive(x) \Rightarrow Likes(Noah, x$)$

An Example

- Noah likes expensive restaurants.
- $\forall x$ Restaurant $(x) \wedge$ Expensive(x) \Rightarrow Likes(Noah, x$)$

An Example

- Noah likes expensive restaurants.
- $\forall x$ Restaurant $(x) \wedge$ Expensive(x) \Rightarrow Likes(Noah, x$)$

Quantifier Scope Ambiguity

- Every man loves a woman.
- $\forall \mathrm{u} \operatorname{Man}(\mathrm{u}) \Rightarrow \exists \mathrm{x} \operatorname{Woman}(\mathrm{x}) \wedge \operatorname{Loves}(\mathrm{u}, \mathrm{x})$

This Isn't Quite Right!

- "Every man loves a woman" really is ambiguous.
- $\forall u \operatorname{Man}(u) \Rightarrow \exists x \operatorname{Woman}(x) \wedge \operatorname{Loves}(u, x)$
- $\exists x \operatorname{Woman}(x) \wedge \forall u \operatorname{Man}(u) \Rightarrow \operatorname{Loves}(u, x)$
- This gives only one of the two meanings.
- Extra ambiguity on top of syntactic ambiguity
- One approach is to delay the quantifier processing until the end, then permit any ordering.

Quantifier Scope

- A seat was available for every customer.
- A toll-free number was available for every customer.
- A secretary called each director.
- A letter was sent to each customer.
- Every man loves a woman who works at the candy store.
- Every 5 minutes a man gets knocked down and he's not too happy about it.

What Else?

- Chapter 18 discusses how you can get this to work for other parts of English (e.g., prepositional phrases).
- Remember attribute-value structures for parsing with more complex terminals than simple symbols?
- You can extend those with semantics as well.
- No time for ...
- Statistical models for semantics
- Parsing algorithms augmented with semantics
- Handling idioms

Extending FOL

- To handle sentences in non-mathematical texts, you need to cope with additional NL phenomena:
- Generalized quantifiers:
- Most dogs bark Most x | Dog(x). Barks(x)
- The happy dog barks The $\mathrm{x} \mid(\operatorname{Happy}(\mathrm{x}) \wedge \operatorname{Dog}(\mathrm{x}))$. $\operatorname{Barks}(\mathrm{x})$
- Speech Acts: ASSERT, YN-QUERY, COMMAND
- WH-QUERY: What did the man eat?

WH-QUERY(The x | Man(x) . (WH y | Thing(y) . Eat($x, y)$))

More extensions!

- Relative clauses are propositions embedded in an NP
- Restrictive versus non-restrictive: the dog that barked all night vs. the dog, which barked all night
- Modal verbs: non-transparency for truth of subordinate clause: Sue thinks that John loves Sandy
- Tense/Aspect
- Plurality
- Discourse!! vs. Dialog

One of the most successful of these institutions is BancoSol in Bolivia.

```
(*A-BE
    (FORM FINITE)
    (TENSE PRESENT)
    (MOOD DECLARATIVE)
    (PUNCTUATION PERIOD)
    (IMPERSONAL -)
    (THEME
        (*G-PARTITIVE
            (SUBSTANCE
                    (*G-PARTITIVE
                            (SUBSTANCE
                            (*O-INSTITUTION
                                    (UNIT -)
                                    (NUMBER PLURAL)
                                    (REFERENCE DEFINITE)
                                    (DISTANCE NEAR)
                            (PERSON THIRD)))
                                (ADJECTIVE
                            (*P-SUCCESSFUL
                                    (DEGREE SUPERLATIVE)))))
            (QUANTIFIER (*QUANT-ONE))))
    (PREDICATE
        (*PROP-BANCOSOL
            (NUMBER SINGULAR)
            (IMPLIED-REFERENCE +)
            (PERSON THIRD)
            (UNIT -)
            (Q-MODIFIER
            (*K-IN
                (OBJECT
                    (*PROP-BOLIVIA
                            (UNIT -)
                            (NUMBER SINGULAR)
                                    (IMPLIED-REFERENCE +)
                    (PERSON THIRD))))))))
```

