
11-711 Advanced NLP
Executable Semantic Parsing, and Beyond

Frank Xu

fangzhex@cs.cmu.edu
Carnegie Mellon University

[Some contents are adapted from talks by Graham Neubig and Pengcheng Yin]

Semantic Parsers: Natural Language Interfaces to Computers

my_list = [3, 5, 1]

sort in descending order

sorted(my_list, reverse=True)

Virtual Assistants

Set an alarm at 7 AM

Remind me for the meeting at 5pm

Play Jay Chou’s latest album

?

?

?

Natural Language Programming

Sort my_list in descending order

Copy my_file to home folder

Dump my_dict as a csv file output.csv

?

?

?

The Semantic Parsing Task

Parsing natural language utterances into machine-executable meaning representations

Meaning RepresentationNatural Language Utterance

Show me flights from Pittsburgh
to Seattle

lambda $0 e (and (flight $0)
(from $0 pittsburgh:ci)
(to $0 seattle:ci))

Semantic Parsing

lambda $0 e (and
(flight $0)
(from $0 Pittsburgh:ci)
(to $0 Seattle:ci)

)

Show me flights from Pittsburgh to
Seattle

lambda-calculus logical form

?

Meaning Representations have Strong Structures

Tree-structured Representation

[Dong and Lapata, 2016]

Machine-executable Meaning Representations

Translating a user’s natural language utterances (e.g., queries) into machine-
executable formal meaning representations (e.g., logical form, SQL, Python code)

Domain-Specific, Task-Oriented
Languages (DSLs)

lambda $0 e (and (flight $0)
(from $0 Pittsburgh:ci)
(to $0 Seattle:ci))

Show me flights from Pittsburgh to
Seattle

lambda-calculus logical form

?

General-Purpose
Programming Languages

Sort my_list in descending order

sorted(my_list, reverse=True)

Python code generation

?

Clarification about Meaning Representations (MRs)
Machine-executable MRs (our focus today) executable programs to accomplish a task

MRs for Semantic Annotation capture the semantics of natural language sentences

Machine-executable
Meaning Representations

lambda $0 e (and (flight $0)
(from $0 pittsburgh:ci)
(to $0 seattle:ci))

Show me flights from Pittsburgh to Seattle

Lambda Calculus Logical Form

Meaning Representations
For Semantic Annotation

The boy wants to go

(want-01
:arg0 (b / boy)
:arg1 (g / go-01))

Abstract Meaning Representation (AMR)

Lambda Calculus

Python, SQL, …

Abstract Meaning Representation (AMR),

Combinatory Categorical Grammar (CCG)

Workflow of a Semantic Parser

User’s Natural Language Query

Show me flights from Pittsburgh to Seattle

Parsing to Meaning Representation

lambda $0 e (and (flight $0)
(from $0 pittsburgh:ci)
(to $0 seattle:ci))

Execute Programs against KBs Execution Results (Answer)

1. Alaska Air 119
2. American 3544 -> Alaska 1101
3. …

Semantic Parsing Datasets

Django

HearthStone

CONCODE

CoNaLa

JuICe

Domain-Specific, Task-Oriented
Languages (DSLs)

lambda $0 e (and (flight $0)
(from $0 Pittsburgh:ci)
(to $0 Seattle:ci))

Show me flights from Pittsburgh to
Seattle

lambda-calculus logical form

?

General-Purpose
Programming Languages

Sort my_list in descending order

sorted(my_list, reverse=True)

Python code generation

?

GeoQuery / ATIS / JOBs

WikiSQL / Spider

IFTTT

GEO Query, ATIS, JOBS

• GEO Query 880 queries about US geographical information

• ATIS 5410 queries about flight booking and airport transportation

• Jobs 640 queries to a job database

GEO Query

argmax $0
(state:t $0)
(count $1 (and

(river:t $1)
(loc:t $1 $0)))

which state has the most rivers
running through it?

Lambda Calculus Logical Form

JOBS

answer(
company(J,’microsoft’),
job(J),
not((req deg(J,’bscs’))))

what Microsoft jobs do not
require a bscs?

Prolog-style Program

ATIS

Lambda Calculus Logical Form

Show me flights from Pittsburgh
to Seattle

lambda $0 e
(and (flight $0)
(from $0 pittsburgh:ci)
(to $0 seattle:ci))

Natural Language Questions with
Database Schema

Text-to-SQL Tasks

Input Utterance

Show me flights from Pittsburgh to Seattle

SQL Query

SELECT Flight.FlightNo

FROM Flight

JOIN Airport as DepAirport

ON

Flight.Departure == DepAirport.Name

JOIN Airport as ArvAirport

ON

Flight.Arrival == ArvAirport.Name

WHERE

DepAirport.CityName == Pittsburgh

AND

ArvAirport.CityName == Seattle

Spider
− Examples from 200 databases

− Target SQL queries involve joining
fields over multiple tables

− Non-trivial Compositionality

– Nested queries

– Set Union

– …

https://yale-lily.github.io

[Yu et al., 2018]

Semantic Parsing Datasets

Django

HearthStone

CONCODE

CoNaLa

Domain-Specific, Task-Oriented
Languages (DSLs)

lambda $0 e (and (flight $0)
(from $0 Pittsburgh:ci)
(to $0 Berkeley:ci))

Show me flights from Pittsburgh to
Berkeley

lambda-calculus logical form

?

General-Purpose
Programming Languages

Sort my_list in descending order

sorted(my_list, reverse=True)

Python code generation

?

GeoQuery / ATIS / JOBs

WikiSQL / Spider

IFTTT

The CONALA Code Generation Dataset

− 2,379 training and 500 test examples

− Natural Language queries collected from

StackOverflow

− Manually annotated, high quality natural

language queries

− Code is highly expressive and compositional

conala-corpus.github.io [Yin et al., 2018]

Get a list of words `words` of a file 'myfile'

words = open('myfile').read().split()

Copy the content of file 'file.txt' to file 'file2.txt'

shutil.copy('file.txt’, 'file2.txt')

Check if all elements in list `mylist` are the same

len(set(mylist)) == 1

Create a key `key` if it does not exist in dict `dic`
and append element `value` to value

dic.setdefault(key, []).append(value)

Supervised Learning of Semantic Parsers

User’s Natural Language Query

Show me flights from Pittsburgh to Seattle

Parsing to Meaning Representation

lambda $0 e (and (flight $0)
(from $0 pittsburgh:ci)
(to $0 seattle:ci))

Train a neural semantic parser with source natural language utterances and target programs

Semantic Parsing as Sequence-to-Sequence Transduction

• Treat the target meaning representation as a sequence of surface tokens

• Reduce the (structured prediction) task as another sequence-to-sequence
learning problem

[Dong and Lapata, 2016; Jia and Liang, 2016]

Task-Specific
Meaning Representations

lambda $0 e (and (flight $0)
(from $0 pittsburgh:ci)
(to $0 seattle:ci))

Show me flights from Pittsburgh to Seattle

Lambda Calculus Logical Form

Issues with Predicting Linearized Programs
• Meaning Representations (e.g., a database query) have strong underlying

structures!

• Issue Using vanilla seq2seq models ignore the rich structures of meaning
representations, and could generate invalid outputs that are not trees

Task-Specific
Meaning Representations

lambda $0 e (and (flight $0)
(from $0 san_Francisco:ci)
(to $0 seattle:ci))

Show me flights from Pittsburgh to Seattle

Task specific logical form

Tree-structured Representation

[Jia and Liang, 2016; Dong and Lapata, 2016]

Core Research Question for Better Models
How to add inductive biases to networks a to better capture the structure of programs?

Predict Programs Following
Task-Specific Program Structures

Encode Utterance and In-Domain
Knowledge Schema

Input Utterance

Show me flights from Pittsburgh to Berkeley

[Xu et al., 2017; Yu et al., 2018]

Grammar/Syntax-driven Semantic Parsing

• Previously introduced methods could generate tree-structured representations
but cannot guarantee they are grammatically correct.

• Meaning (e.g., Python) have strong underlying grammar/syntax

• How can we explicitly leverage the grammar of programs for better generation?

Abstract Syntax TreePython Abstract Grammar

sorted(my_list, reverse=True)

Call ⟼ expr[func] expr*[args] keyword*[keywords]

If ⟼ expr[test] stmt*[body] stmt*[orelse]

For ⟼ expr[target] expr*[iter] stmt*[body]

stmt*[orelse]

FunctionDef ⟼ identifier[name] expr*[iter]

stmt*[body] stmt*[orelse]

expr ⟼ Name | Call
Expr

Call

expr[func] expr*[args] keyword*[keywords]

Name

Name

erpr

str(my_list)

keyword

str(sorted)

....

[Yin and Neubig, 2017; Rabinovich et al., 2017]

Grammar/Syntax-driven Semantic Parsing
• Key Idea use the grammar of the target meaning representation (Python AST) as

prior symbolic knowledge in a neural sequence-to-sequence model

Input Intent sort my_list in descending order

Generated AST

sorted(my_list, reverse=True)Surface Code

(𝒚)

(𝒄)

𝑝 𝑦 𝑥 : a seq2seq model with
prior syntactic information

Deterministic transformation
(using Python astor library)

(𝒙)

Expr

Call

expr[func] expr*[args] keyword*[keywords]

Name

Name

erpr

str(my_list)

keyword

str(sorted)

....

[Yin and Neubig, 2017; Rabinovich et al., 2017]

Grammar/Syntax-driven Semantic Parsing
• Factorize the generation story of an AST into sequential application of actions {𝑎𝑡}:

– ApplyRule[r]: apply a production rule 𝑟 to the frontier node in the derivation

– GenToken[v]: append a token 𝑣 (e.g., variable names, string literals) to a terminal

root 𝑎1 root ⟼ Expr

Expr

expr[Value]

Call

expr[func] expr*[args] keyword*[keywords]

Name

str Name

erpr

str(my_list)

keyword

𝑎2 Expr ⟼ expr[Value]

𝑎3 expr ⟼ Call

𝑎4 Call ⟼ expr[func] expr*[args]

keyword*[keywords]

𝑎5

𝑎6

𝑎7

𝑎8

expr ⟼ Name

Name ⟼ str

GenToken[sorted]

GenToken[</n>]

𝑎9

𝑎10

𝑎11

𝑎12

𝑎13

expr* ⟼ expr

expr ⟼ Name

Name ⟼ str

GenToken[my_list]

GenToken[</n>]

𝑎14 keyword* ⟼ keyword

....

Derivation AST Action Sequence

𝑡𝑖

𝑡𝑖

ApplyRule

GenToken

Generated by a
recurrent neural
decoder

str(sorted)

....

sorted(my_list, reverse=True)

TranX: Transition-based Abstract SyntaX Parser

• Convenient interface to specify task-dependent grammar in plain text

• Customizable conversion from abstract syntax trees to domain-specific programs

• Built-in support for many languages: Python, SQL, Lambda Calculus, Prolog…

Sort my_list in descending order

stmt FunctionDef(identifiler name,

expr Call(expr func, expr* args,

Grammar Specification

 arguments args, stmt* body)

 Expr(expr value)

keyword* keywords)

Str(string id)

|

Name(identifier id)|

|

Input Utterance

ApplyConstr(Expr)

ApplyConstr(Call)

ApplyConstr(Name)

Transition System

. . .

GenToken(sorted)

Expr

Call

Name

sorted

Name

my_list

Keyword

Abstract Syntax Tree

. . .

[Yin and Neubig 2018, Yin and Neubig 2019]

github.com/pcyin/tranX

Data Collection is CostlySupervised Parsers are Data Hungry

Supervised Learning: the Data Inefficiency Issue

Purely supervised neural semantic
parsing models require large
amounts of training data

Copy the content of file 'file.txt' to file 'file2.txt'

shutil.copy('file.txt','file2.txt')

Get a list of words `words` of a file 'myfile'

words = open('myfile').read().split()

Check if all elements in list `mylist` are the same

len(set(mylist)) == 1

Collecting parallel training

data costs and

*Examples from conala-corpus.github.io [Yin et al., 2018]

1700 USD for <3K Python code generation examples

Weakly-supervised Learning of Semantic Parsers

User’s Natural Language Query

Show me flights from Pittsburgh to Seattle

Parsing to Meaning Representation

lambda $0 e (and (flight $0)
(from $0 pittsburgh:ci)
(to $0 seattle:ci))

Query Execution Execution Results (Answer)

1. AS 119
2. AA 3544 -> AS 1101
3. …

Train a semantic parser using natural language query and the execution results
(a.k.a. Semantic Parsing with Execution)

Weak supervision signal

As unobserved
latent variable

[Clarke et al., 2010; Liang et al., 2011]

Weakly-supervised Learning of Semantic Parsers

Incorporate external resources, unlabeled data, noisy data, etc. (a.k.a Data
Augmentation)

Software library documentations

Stack Overflow Q&A

Weakly-supervised Learning of Semantic Parsers

[Xu et al., 2020]

Data augmentation may suffer from distribution mismatch!

Data is important…

OpenAI Codex uses no labeled data, and deals with code linearly without
explicitly modeling structures (Transformer-based language models)

Data is important…

Data is important…

Pretraining Comes at a Price

Codex for Python training data: 54 million public software
repositories hosted on GitHub, containing 179 GB of unique Python
files. The model contains 12 billion parameters.

No access to this amount of data? Recall previously introduced
models that exploits induction bias (structures, etc.).

Recap: Workflow of a Semantic Parser

User’s Natural Language Query

Show me flights from Pittsburgh to Seattle

Parsing to Meaning Representation

lambda $0 e (and (flight $0)
(from $0 san_Francisco:ci)
(to $0 seattle:ci))

Query Execution Execution Results (Answer)

1. AS 119
2. AA 3544 -> AS 1101
3. …

