
CS11-711 Advanced NLP

Domain-specific Modeling:

Code and Math
Xiang Yue

https://phontron.com/class/anlp-fall2024

Slides are partially adapted from 11-891 Neural Code Generation (by

Daniel Fried and Sean Welleck)

https://cmu-codegen.github.io/s2024/

What will cover in this class

- Code Pre-training, Fine-tuning, Evaluation

- Math Pre-training, Fine-tuning, Evaluation

Domain-specific Modeling:

CodeBERT: Masked Language
Modeling Objective

Bidirectional Transformer

[CLS] def count_ [MASK] … [SEP] Count the

lines

Code Docstring

Mask 15% of the tokens, randomly, and try to predict these masked tokens.

CodeBERT: Replaced Token
Detection Objective

Rather than masked tokens, use tokens replaced by (weaker) LMs, and distinguish

original tokens from replaced tokens.

Binary

classification

CodeBERT: Pre-Training

125M parameter bidirectional encoder Transformer

• Train on 2M documented functions (text & code) and 6M

undocumented functions (code only) from GitHub

CodeBERT: Finetuning

Classification Tasks Generation Tasks

Parts of the task network are initialized with CodeBERT parameters.

CodeXGLUE Benchmark
Collection of tasks, largely with natural data mined from GitHub

CodeBERT: Results

• Joint training on code and documentation > code
alone

• Initializing with a text-only model (RoBERTa) helps

Results for function/documentation matching (code retrieval)

CodeBERT: Results

• Joint training on code and documentation > code
alone

• Initializing with a text-only model (RoBERTa) helps

Results for function-to-docstring generation

CodeBERT: Masked Prediction
Probing

T5: Text-to-Text Transfer
Transformer

‣ Objective: similar denoising scheme to BART (they were released within a week of

each other in fall 2019).

‣ Input: text with gaps. Output: a series of phrases to fill those gaps.

Raffel et al. (2019)

‣ Lower computational cost compared to BART: predicts fewer tokens.

CodeT5: Objectives

Like code de-obfuscationLike T5

Pre-train like T5 (seq-to-seq denoising/masked span prediction), but add identifier-

specific objectives to learn code semantics.

Wang et al. (2021)

CodeT5: Training

• Pre-train on CodeSearchNet (6 PLs) + BigQuery (C & C#);

8.4M instances

• 60M and 220M parameter models, trained for 5 & 12 days

on 16 GPUs.

• Couldn’t initialize with T5, because T5’s tokenizer doesn’t

preserve code-specific symbols like { and }. Train own

tokenizer

• Then, optionally do multi-task fine-tuning: train on multiple

seq-to-seq tasks from CodeXGLUE simultaneously

(translation, refinement, summarization, …).

Wang et al. (2021)

CodeT5: Analysis

• All components of the objective help. MSP: masked
span prediction. IT: identifier tagging. MIP: masked
identifier prediction

CodeT5+

• Specializations of past approaches:

• For translation: T5-like (seq-to-seq denoising) generally
best

• For generating new content: GPT-like (unidirectional
decoder-only) generally best

• For doc-level embeddings: BERT-like (MLM bidirectional
encoder) generally best

• CodeT5+: use a seq-to-seq model but train it with a
progression of objectives, and pre-trained initializations

Wang et al. (2023)

CodeT5+: Overview

16

CodeT5+, https://arxiv.org/abs/2305.07922

https://arxiv.org/abs/2305.07922

Goal: Train model to recover code contexts at different scales

Data: Code from GitHub

Tasks:

• Span Denoising (15% masked tokens)

• Causal LM

• Partial programs

• Complete programs

17

Stage 1: Code-only pre-training

Goal: Train model for cross-modal understanding and generation

Data: CodeSearchNet (Docstring & Code)

Tasks:

• Contrastive Learning (align feature space of code and text
representation)

• Text-Code Matching (predict if semantics match)

• Text-Code Causal LM (text-to-code and code-to-text generation)

18

Stage 2: Code and text pre-
training

HumanEval code generation: slightly outperforms the CodeGen models it is
initialized with

CodeT5+: Results

Code retrieval: outperforms CodeT5 and CodeBERT

CodeT5+: Results

Filling-in-the-Middle

LLM Training Objectives

“Causal” (L-to-R)

def minimize_in_graph(build_loss_fn, num_steps=200, optimizer=None):
""" Minimize a loss function using gradient.
Args:

build_loss_fn: a function that returns a loss tensor for a mini-batch of examples.
num_steps: number of gradient descent steps to perform.
optimizer: an optimizer to use when minimizing the loss function. If None, will use Adam

"""
optimizer = tf.compat.v1.train.AdamOptimizer(0.1) if optimizer is None else optimizer
minimize_op = tf.compat.v1.while_loop(

cond=lambda step: step < num_steps,
body=train_loop_body,
loop_vars=[tf.constant(0)], return_same_structure=True)[0]

return minimize_op

Masked Infilling “Causal Masking” /
Fill-in-the-Middle (FIM)

[Donahue+ 2020, Aghajanyan+

2022, ours, Bavarian+ 2022]

[e.g. BERT, CodeBERT][e.g. GPT-*, Codex]

Prefix

Target

Suffix

Causal Masking / FIM Objective

[Donahue et al. 2020, Aghajanyan et al. 2022, Fried et al. 2022, Bavarian et al. 2022]

InCoder: Model Training

• Training Data

• 600K permissively-licensed repositories
from GitHub & GitLab. ~150GB total

• StackOverflow: questions, answers,
comments. ~50GB

• Models

• Unidirectional, decoder-only Transformer

• 1B model: ~1 week on 128 V100s

• 6B model: ~3 weeks on 240 V100s

Other Infilling Code Models

Codex

• Typically trained on lots of code from GitHub, often mixed with

text

• Codex (Chen et al. 2021): OpenAI continues to train GPT-3

12B on 160GB of Python data from GitHub

• All GPT 3.5 models are trained on mixtures of code and text.
https://platform.openai.com/docs/model-index-for-researchers

• Many open-source models since then follow this recipe

(PolyCoder, CodeGen, StarCoder)

Codex: Scaling Laws

Codex: “HumanEval” Benchmark

• Evaluation: test case
execution

• 164 hand-written
examples

• Why human-written?
• “It is important for these tasks

to be hand-written, since our
models are trained on a large
fraction of GitHub, which
already contains solutions to
problems from a variety of
sources. ”

• Optimizing BLEU !=
Improving Functional
Correctness

DeepSeek Coder

DeepSeek Coder:
Repo-Level Context

• Parse file dependencies and arrange repo files in
the context window using a topological ordering.

• Theoretically can handle 64K tokens, but “empirical
observations suggest that the model delivers its
most reliable outputs within a 16K token range”

Deepseek Coder:
High-quality data matters

MBPP: Mostly Basic Python
Programs

• Similar to HumanEval, but a bit easier

• 974 short Python problems, written by crowdworkers

• 58% mathematical, 43% list processing, 19% string

processing

Austin et al. 2021

HumanEval Looks Like Toy Examples?

• HumanEval Examples • Real-World

Development Code

SWE-Bench: Solving GitHub Issues

https://www.swebench.com/

https://www.swebench.com/

SWE-Bench Leaderboard

We will cover more in Language Agents class!

Math Language Models

Chain-of-Thought (CoT)

https://arxiv.org/abs/2201.11903

https://arxiv.org/abs/2201.11903

GSM8K (Cobbe et al., 2021)

• Middle school math word problems

MATH (Hendricks et al., 2021)
• Competition mathematics problems

• Step-by-step

solutions written in

LATEX and natural

language.

• Models are tasked

with generating

tokens to

construct the final

(boxed)

Math Pre-training: Minerva

https://arxiv.org/pdf/2206.14858

• Models were trained on a dataset of 38.5B tokens from

webpages filtered for mathematical content and papers from the

arXiv preprint server.

• The dataset includes general natural language data, which is the

same as the one used for pretraining PaLM.

• Mathematical webpages were processed to remove most HTML

tags while preserving MathJax expressions, LATEX symbols,

and formatting.

https://arxiv.org/pdf/2206.14858

Minerva Performance

Inference-Time Techniques

We will cover more in Inference Algorithm class!

LLEMMA: An open LM for Math

https://arxiv.org/pdf/2310.10631

LLEMMA improves with a modest amount of

math-specific compute

https://arxiv.org/pdf/2310.10631

LLEMMA Data: Proof-Pile-2

OpenWebMath

LLEMMA Performance

LLEMMA Performance

LLEMMA vs. Llama 2 as initialization for

finetuning on MetaMathQA

DeepSeek Math

DeepSeekMath Corpus

DeepSeekMath Performance

Training on Code Improves Math

Write Code to Solve Math Problems

https://arxiv.org/pdf/2211.10435

https://arxiv.org/abs/2211.12588

https://arxiv.org/pdf/2211.10435
https://arxiv.org/abs/2211.12588

MAmmoTH: Hybrid Thoughts
Instruction Tuning

https://arxiv.org/pdf/2309.05653

https://arxiv.org/pdf/2309.05653

Questions?

	Slide 1: CS11-711 Advanced NLP Domain-specific Modeling: Code and Math
	Slide 2: What will cover in this class
	Slide 3: CodeBERT: Masked Language Modeling Objective
	Slide 4: CodeBERT: Replaced Token Detection Objective
	Slide 5: CodeBERT: Pre-Training
	Slide 6: CodeBERT: Finetuning
	Slide 7: CodeXGLUE Benchmark
	Slide 8: CodeBERT: Results
	Slide 9: CodeBERT: Results
	Slide 10: CodeBERT: Masked Prediction Probing
	Slide 11: T5: Text-to-Text Transfer Transformer
	Slide 12: CodeT5: Objectives
	Slide 13: CodeT5: Training
	Slide 14: CodeT5: Analysis
	Slide 15: CodeT5+
	Slide 16: CodeT5+: Overview
	Slide 17: Stage 1: Code-only pre-training
	Slide 18: Stage 2: Code and text pre-training
	Slide 19: CodeT5+: Results
	Slide 20
	Slide 21: Filling-in-the-Middle
	Slide 22: LLM Training Objectives
	Slide 23: Causal Masking / FIM Objective
	Slide 24: InCoder: Model Training
	Slide 25: Other Infilling Code Models
	Slide 26: Codex
	Slide 27: Codex: Scaling Laws
	Slide 28: Codex: “HumanEval” Benchmark
	Slide 29: DeepSeek Coder
	Slide 30: DeepSeek Coder: Repo-Level Context
	Slide 31: Deepseek Coder: High-quality data matters
	Slide 32: MBPP: Mostly Basic Python Programs
	Slide 33: HumanEval Looks Like Toy Examples?
	Slide 34
	Slide 35
	Slide 36: Math Language Models
	Slide 37: Chain-of-Thought (CoT)
	Slide 38: GSM8K (Cobbe et al., 2021)
	Slide 39: MATH (Hendricks et al., 2021)
	Slide 40: Math Pre-training: Minerva
	Slide 41: Minerva Performance
	Slide 42: Inference-Time Techniques
	Slide 43: LLEMMA: An open LM for Math
	Slide 44: LLEMMA Data: Proof-Pile-2
	Slide 45: OpenWebMath
	Slide 46: LLEMMA Performance
	Slide 47: LLEMMA Performance
	Slide 48: DeepSeek Math
	Slide 49: DeepSeekMath Corpus
	Slide 50: DeepSeekMath Performance
	Slide 51: Training on Code Improves Math
	Slide 52: Write Code to Solve Math Problems
	Slide 53: MAmmoTH: Hybrid Thoughts Instruction Tuning
	Slide 54: Questions?

