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What will cover in this class

- Code Pre-training, Fine-tuning, Evaluation

- Math Pre-training, Fine-tuning, Evaluation

Domain-specific Modeling: 



CodeBERT: Masked Language 
Modeling Objective

Bidirectional Transformer

[CLS]          def        count_    [MASK]    …               [SEP]       Count the

lines

Code Docstring

Mask 15% of the tokens, randomly, and try to predict these masked tokens.



CodeBERT: Replaced Token 
Detection Objective

Rather than masked tokens, use tokens replaced by (weaker) LMs, and distinguish 

original tokens from replaced tokens.

Binary 

classification



CodeBERT: Pre-Training

125M parameter bidirectional encoder Transformer

• Train on 2M documented functions (text & code) and 6M 

undocumented functions (code only) from GitHub



CodeBERT: Finetuning

Classification Tasks Generation Tasks

Parts of the task network are initialized with CodeBERT parameters.



CodeXGLUE Benchmark
Collection of tasks, largely with natural data mined from GitHub



CodeBERT: Results

• Joint training on code and documentation > code 
alone

• Initializing with a text-only model (RoBERTa) helps

Results for function/documentation matching (code retrieval)



CodeBERT: Results

• Joint training on code and documentation > code 
alone

• Initializing with a text-only model (RoBERTa) helps

Results for function-to-docstring generation



CodeBERT: Masked Prediction 
Probing



T5: Text-to-Text Transfer 
Transformer

‣ Objective: similar denoising scheme to BART (they were released within a week of 

each other in fall 2019).

‣ Input: text with gaps. Output: a series of phrases to fill those gaps.

Raffel et al. (2019)

‣ Lower computational cost compared to BART: predicts fewer tokens.



CodeT5: Objectives

Like code de-obfuscationLike T5

Pre-train like T5 (seq-to-seq denoising/masked span prediction), but add identifier-

specific objectives to learn code semantics.

Wang et al. (2021)



CodeT5: Training

• Pre-train on CodeSearchNet (6 PLs) + BigQuery (C & C#); 

8.4M instances

• 60M and 220M parameter models, trained for 5 & 12 days 

on 16 GPUs.

• Couldn’t initialize with T5, because T5’s tokenizer doesn’t 

preserve code-specific symbols like { and }. Train own 

tokenizer 

• Then, optionally do multi-task fine-tuning: train on multiple 

seq-to-seq tasks from CodeXGLUE simultaneously 

(translation, refinement, summarization, …).

Wang et al. (2021)



CodeT5: Analysis

• All components of the objective help. MSP: masked 
span prediction. IT: identifier tagging. MIP: masked 
identifier prediction



CodeT5+

• Specializations of past approaches:

• For translation: T5-like (seq-to-seq denoising) generally 
best

• For generating new content: GPT-like (unidirectional 
decoder-only) generally best

• For doc-level embeddings: BERT-like (MLM bidirectional 
encoder) generally best

• CodeT5+: use a seq-to-seq model but train it with a 
progression of objectives, and pre-trained initializations

Wang et al. (2023)



CodeT5+: Overview
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CodeT5+, https://arxiv.org/abs/2305.07922

https://arxiv.org/abs/2305.07922


Goal: Train model to recover code contexts at different scales 

Data: Code from GitHub

Tasks: 

• Span Denoising (15% masked tokens)

• Causal LM 

• Partial programs

• Complete programs
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Stage 1: Code-only pre-training



Goal: Train model for cross-modal understanding and generation 

Data: CodeSearchNet (Docstring & Code)

Tasks: 

• Contrastive Learning (align feature space of code and text 
representation)

• Text-Code Matching (predict if semantics match)

• Text-Code Causal LM (text-to-code and code-to-text generation)
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Stage 2: Code and text pre-
training



HumanEval code generation: slightly outperforms the CodeGen models it is 
initialized with

CodeT5+: Results



Code retrieval: outperforms CodeT5 and CodeBERT

CodeT5+: Results



Filling-in-the-Middle



LLM Training Objectives

“Causal” (L-to-R)

def minimize_in_graph(build_loss_fn, num_steps=200, optimizer=None): 
""" Minimize a loss function using gradient.
Args:

build_loss_fn: a function that returns a loss tensor for a mini-batch of examples.
num_steps: number of gradient descent steps to perform.
optimizer: an optimizer to use when minimizing the loss function. If None, will use Adam

"""
optimizer = tf.compat.v1.train.AdamOptimizer(0.1) if optimizer is None else optimizer 
minimize_op = tf.compat.v1.while_loop( 

cond=lambda step: step < num_steps, 
body=train_loop_body, 
loop_vars=[tf.constant(0)], return_same_structure=True)[0] 

return minimize_op

Masked Infilling “Causal Masking” / 
Fill-in-the-Middle (FIM)

[Donahue+ 2020, Aghajanyan+ 

2022, ours, Bavarian+ 2022]

[e.g. BERT, CodeBERT][e.g. GPT-*, Codex]

Prefix

Target

Suffix



Causal Masking / FIM Objective

[Donahue et al. 2020, Aghajanyan et al. 2022, Fried et al. 2022, Bavarian et al. 2022]



InCoder: Model Training

• Training Data

• 600K permissively-licensed repositories 
from GitHub & GitLab. ~150GB total

• StackOverflow: questions, answers, 
comments. ~50GB

• Models

• Unidirectional, decoder-only Transformer

• 1B model: ~1 week on 128 V100s

• 6B model: ~3 weeks on 240 V100s



Other Infilling Code Models



Codex

• Typically trained on lots of code from GitHub, often mixed with 

text 

• Codex (Chen et al. 2021): OpenAI continues to train GPT-3 

12B on 160GB of Python data from GitHub

• All GPT 3.5 models are trained on mixtures of code and text. 
https://platform.openai.com/docs/model-index-for-researchers

• Many open-source models since then follow this recipe 

(PolyCoder, CodeGen, StarCoder)



Codex: Scaling Laws



Codex: “HumanEval” Benchmark

• Evaluation: test case 
execution

• 164 hand-written 
examples

• Why human-written?
• “It is important for these tasks 

to be hand-written, since our 
models are trained on a large 
fraction of GitHub, which 
already contains solutions to 
problems from a variety of 
sources. ”

• Optimizing BLEU != 
Improving Functional 
Correctness 



DeepSeek Coder



DeepSeek Coder: 
Repo-Level Context

• Parse file dependencies and arrange repo files in 
the context window using a topological ordering.

• Theoretically can handle 64K tokens, but “empirical 
observations suggest that the model delivers its 
most reliable outputs within a 16K token range”



Deepseek Coder: 
High-quality data matters



MBPP: Mostly Basic Python 
Programs

• Similar to HumanEval, but a bit easier

• 974 short Python problems, written by crowdworkers

• 58% mathematical, 43% list processing, 19% string 

processing

Austin et al. 2021



HumanEval Looks Like Toy Examples?

• HumanEval Examples • Real-World 

Development Code



SWE-Bench: Solving GitHub Issues

https://www.swebench.com/

https://www.swebench.com/


SWE-Bench Leaderboard

We will cover more in Language Agents class!



Math Language Models



Chain-of-Thought (CoT)

https://arxiv.org/abs/2201.11903

https://arxiv.org/abs/2201.11903


GSM8K (Cobbe et al., 2021)

• Middle school math word problems



MATH (Hendricks et al., 2021)
• Competition mathematics problems

• Step-by-step 

solutions written in 

LATEX and natural 

language. 

• Models are tasked 

with generating 

tokens to 

construct the final 

(boxed) 



Math Pre-training: Minerva 

https://arxiv.org/pdf/2206.14858

• Models were trained on a dataset of 38.5B tokens from 

webpages filtered for mathematical content and papers from the 

arXiv preprint server.

• The dataset includes general natural language data, which is the 

same as the one used for pretraining PaLM.

• Mathematical webpages were processed to remove most HTML 

tags while preserving MathJax expressions, LATEX symbols, 

and formatting.

https://arxiv.org/pdf/2206.14858


Minerva Performance



Inference-Time Techniques

We will cover more in Inference Algorithm class! 



LLEMMA: An open LM for Math

https://arxiv.org/pdf/2310.10631

LLEMMA improves with a modest amount of 

math-specific compute

https://arxiv.org/pdf/2310.10631


LLEMMA Data: Proof-Pile-2



OpenWebMath



LLEMMA Performance



LLEMMA Performance

LLEMMA vs. Llama 2 as initialization for 

finetuning on MetaMathQA



DeepSeek Math



DeepSeekMath Corpus



DeepSeekMath Performance



Training on Code Improves Math 



Write Code to Solve Math Problems

https://arxiv.org/pdf/2211.10435

https://arxiv.org/abs/2211.12588

https://arxiv.org/pdf/2211.10435
https://arxiv.org/abs/2211.12588


MAmmoTH: Hybrid Thoughts 
Instruction Tuning

https://arxiv.org/pdf/2309.05653

https://arxiv.org/pdf/2309.05653


Questions?
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