CS11-711 Advanced NLP Domain-specific Modeling: Code and Math

Xiang Yue

Carnegie Mellon University

Language Technologies Institute

https://phontron.com/class/anlp-fall2024

Slides are partially adapted from 11-891 <u>Neural Code Generation</u> (by Daniel Fried and Sean Welleck)

What will cover in this class

Domain-specific Modeling:

- Code Pre-training, Fine-tuning, Evaluation
- Math Pre-training, Fine-tuning, Evaluation

CodeBERT: Masked Language Modeling Objective

Mask 15% of the tokens, randomly, and try to predict these masked tokens.

CodeBERT: Replaced Token Detection Objective

Rather than masked tokens, use tokens replaced by (weaker) LMs, and distinguish original tokens from replaced tokens.

CodeBERT: Pre-Training

125M parameter bidirectional encoder Transformer

• Train on 2M documented functions (text & code) and 6M undocumented functions (code only) from GitHub

TRAINING DATA	<i>bimodal</i> DATA	unimodal CODES
GO JAVA JAVASCRIPT PHP PYTHON RUBY	319,256 500,754 143,252 662,907 458,219 52,905	726,768 1,569,889 1,857,835 977,821 1,156,085 164,048
ALL	2,137,293	6,452,446

CodeBERT: Finetuning

Parts of the task network are initialized with CodeBERT parameters.

Classification Tasks

Supported tasks:

- code search
- code clone detection

Generation Tasks

- code repair
- code translation

CodeXGLUE Benchmark

Collection of tasks, largely with natural data mined from GitHub

Category	Task	Dataset Name	Language	Train/Dev/Test Size	Baselines	
	Clone Detection	BigCloneBench [71]	Java	900K/416K/416K		
	Cione Detection	POJ-104 [52]	C/C++	32K/8K/12K		
	Defect Detection	Devign [99]	С	21K/2.7K/2.7K	CodeBFRT	
		CT all	Python,Java,PHP,	/ /176V	COUCDERT	
	Cloze Test	CI-all	JavaScript,Ruby,Go	-/-/1/0K		
	CIOZE TEST	OT may/min [19]	Python,Java,PHP,	/ /9 <i>C</i> V		
Code-Code		$C1-\max/\min\left[10\right]$	JavaScript,Ruby,Go	-/-/2.0K		
	Codo Completion	PY150 [62]	Python	100K/5K/50K		
	Code Completion	Github Java Corpus[4]	nub Java Corpus[4] Java		CodeGPT	
	Code Repair	Bugs2Fix [75]	Java	98K/12K/12K	Encoder-	
	Code Translation	CodeTrans	Java-C#	10K/0.5K/1K	Decoder	
		CodeSearchNet [35],	Duthon	251V/0 6V/10V		
	NI Code Search	AdvTest	rython	2J1K/9.0K/19K		
	NL Code Search	CodeSearchNet [35],	Duthon	251V/06V/1V	CodeBERT	
Text-Code		WebQueryTest	r ython	231R/ 9.0R/ 1R		
	Text-to-Code	CONCODE [38]	Iava	100K/2K/2K	CodeCPT	
	Generation		Java	1001(/21(/21(
Code-Text	Code Summarization	CodeSearchNet [35]	Python,Java,PHP,	908K/45K/53K		
			JavaScript,Ruby,Go	700IX/ 45IX/ 55IX	Encoder-	
Text-Text	Documentation	Microsoft Docs	English-Latvian/Danish	156K/4K/4K	Decoder	
	Translation	14110103011 12003	/Norwegian/Chinese	1301(/ 41(/ 41(

CodeBERT: Results

- Joint training on code and documentation > code alone
- Initializing with a text-only model (RoBERTa) helps

MODEL	RUBY	JAVASCRIPT	GO	PYTHON	JAVA	PHP	MA-AVG
ROBERTA	0.6245	0.6060	0.8204	0.8087	0.6659	0.6576	0.6972
PT w/ CODE ONLY (INIT=S)	0.5712	0.5557	0.7929	0.7855	0.6567	0.6172	0.6632
PT w/ Code Only (init= R)	0.6612	0.6402	0.8191	0.8438	0.7213	0.6706	0.7260
CODEBERT (MLM, INIT=S)	0.5695	0.6029	0.8304	0.8261	0.7142	0.6556	0.6998
CODEBERT (MLM, INIT=R)	0.6898	0.6997	0.8383	0.8647	0.7476	0.6893	0.7549
CODEBERT (RTD, INIT=R)	0.6414	0.6512	0.8285	0.8263	0.7150	0.6774	0.7233
CODEBERT (MLM+RTD, INIT=R)	0.6926	0.7059	0.8400	0.8685	0.7484	0.7062	0.7603

Results for function/documentation matching (code retrieval)

CodeBERT: Results

- Joint training on code and documentation > code alone
- Initializing with a text-only model (RoBERTa) helps

MODEL	RUBY	JAVASCRIPT	GO	PYTHON	JAVA	PHP	OVERALL
seq2seq	9.64	10.21	13.98	15.93	15.09	21.08	14.32
TRANSFORMER	11.18	11.59	16.38	15.81	16.26	22.12	15.56
ROBERTA	11.17	11.90	17.72	18.14	16.47	24.02	16.57
PRE-TRAIN W/ CODE ONLY	11.91	13.99	17.78	18.58	17.50	24.34	17.35
CODEBERT (RTD)	11.42	13.27	17.53	18.29	17.35	24.10	17.00
CODEBERT (MLM)	11.57	14.41	17.78	18.77	17.38	24.85	17.46
CODEBERT (RTD+MLM)	12.16	14.90	18.07	19.06	17.65	25.16	17.83

Results for function-to-docstring generation

CodeBERT: Masked Prediction Probina

	masked NL token				
"Transforms a vector np.arange(-N, M, dx) to np.o max(N,M),dx)]"	arange(<mark>min</mark> (vec),				
<pre>def vec_to_halfvec(vec):</pre>					
<pre>d = vec[1:] - vec[:-1] if ((d/d.mean()).std() > 1e-14) or (d.mean() < 0): raise ValueError('vec must be np.arange() in increasing order')</pre>					
dx = d.mean() masked PL to	lken				
lowest = np.abs(vec). min ()					
highest = $np.abs(vec).max()$					
return np.arange(lowest, highest + 0.1*dx, dx).	astype(vec.dtype)				

		тах	min	less	greater
NU	Roberta	96.24%	3.73%	0.02%	0.01%
	CodeBERT (MLM)	39.38%	60.60%	0.02%	0.0003%
ы	Roberta	95.85%	4.15%	-	-
PL	CodeBERT (MLM)	0.001%	99.999%	-	-

Figure 3: Case study on python language. Masked tokens in NL (in blue) and PL (in yellow) are separately applied. Predicted probabilities of RoBERTa and Code-BERT are given.

T5: Text-to-Text Transfer Transformer

- Objective: similar denoising scheme to BART (they were released within a week of each other in fall 2019).
- Input: text with gaps. Output: a series of phrases to fill those gaps.
- Lower computational cost compared to BART: predicts fewer tokens.

Original text Thank you for inviting me to your party last week. Inputs Thank you <X> me to your party <Y> week. Targets <X> for inviting <Y> last <Z>

Raffel et al. (2019)

Wang et al. (2021)

CodeT5: Objectives

Pre-train like T5 (seq-to-seq denoising/masked span prediction), but add identifierspecific objectives to learn code semantics.

Figure 2: Pre-training tasks of CodeT5. We first alternately train span prediction, identifier prediction, and identifier tagging on both unimodal and bimodal data, and then leverage the bimodal data for dual generation training.

CodeT5: Training

Wang et al. (2021)

- Pre-train on CodeSearchNet (6 PLs) + BigQuery (C & C#);
 8.4M instances
 - 60M and 220M parameter models, trained for 5 & 12 days on 16 GPUs.
 - Couldn't initialize with T5, because T5's tokenizer doesn't preserve code-specific symbols like { and }. Train own tokenizer
 - Then, optionally do **multi-task fine-tuning**: train on multiple seq-to-seq tasks from CodeXGLUE simultaneously (translation, refinement, summarization, ...).

CodeT5: Analysis

 All components of the objective help. MSP: masked span prediction. IT: identifier tagging. MIP: masked identifier prediction

Methods	Sum-PY (BLEU)	Code-Gen (CodeBLEU)	Refine Small (EM)	Defect (Acc)
CodeT5	20.04	41.39	19.06	63.40
-MSP	18.93	37.44	15.92	64.02
-IT	19.73	39.21	18.65	63.29
-MIP	19.81	38.25	18.32	62.92

CodeT5+

- Specializations of past approaches:
 - For translation: T5-like (seq-to-seq denoising) generally best
 - For generating new content: GPT-like (unidirectional decoder-only) generally best
 - For doc-level embeddings: BERT-like (MLM bidirectional encoder) generally best
- CodeT5+: use a seq-to-seq model but train it with a progression of objectives, and pre-trained initializations

CodeT5+: Overview

CodeT5+, https://arxiv.org/abs/2305.07922

Stage 1: Code-only pre-training

Goal: Train model to recover code contexts at different scales

Data: Code from GitHub

<u>Tasks</u>:

- Span Denoising (15% masked tokens)
- Causal LM
 - Partial programs
 - Complete programs

Stage 2: Code and text pretraining

<u>Goal</u>: Train model for cross-modal understanding and generation <u>Data</u>: CodeSearchNet (Docstring & Code)

<u>Tasks</u>:

- Contrastive Learning (align feature space of code and text representation)
- Text-Code Matching (predict if semantics match)
- Text-Code Causal LM (text-to-code and code-to-text generation)

CodeT5+: Results

HumanEval code generation: slightly outperforms the CodeGen models it is initialized with

Model	Model size	pass@1	pass@10	pass@100			
Closed-source models							
Codex	2.5B	21.4	35.4	59.5			
Codex	12 B	28.8	46.8	72.3			
code-cushman-001	-	33.5	54.3	77.4			
code-davinci-002	-	47.0	74.9	92.1			
GPT-3.5	-	48.1	-	-			
	Open-source	models					
CodeGen-mono	2B	23.7	36.6	57.0			
CodeGen-mono	6B	26.1	42.3	65.8			
CodeGen-mono	16B	29.3	49.9	75.0			
$\overline{CodeT5+}$	<u>2</u> 20M	12.0	20.7				
CodeT5+	770M	15.5	27.2	42.7			
CodeT5+	2B	24.2	38.2	57.8			
CodeT5+	6B	28.0	47.2	69.8			
CodeT5+	16B	30.9	51.6	76.7			

CodeT5+: Results

Code retrieval: outperforms CodeT5 and CodeBERT

Table 6: **Text-to-Code Retrieval results (MRR) on CodeXGLUE:** CodeT5+ achieves consistent performance gains over the original CodeT5 models across all 3 retrieval benchmarks in 7 programming languages. Overall, our models demonstrate remarkable performance, outperforming many strong encoder-based models pretrained with contrastive loss such as SYNCOBERT and UniXcoder.

Model	CodeSearchNet					$Cos O \Lambda$	A dy Test		
Widdel	Ruby	JS	Go	Python	Java	PHP	Overall	CUSQA	Auviesi
CodeBERT 125M	67.9	62.0	88.2	67.2	67.6	62.8	69.3	65.7	27.2
GraphCodeBERT 125M	70.3	64.4	89.7	69.2	69.1	64.9	71.3	68.4	35.2
SYNCOBERT 125M	72.2	67.7	91.3	72.4	72.3	67.8	74.0	-	38.3
UniXcoder 125M	74.0	68.4	91.5	72.0	72.6	67.6	74.4	70.1	41.3
CodeGen-multi 350M	66.0	62.2	90.0	68.6	70.1	63.9	70.1	64.8	34.8
PLBART 140M	67.5	61.6	88.7	66.3	66.3	61.1	68.6	65.0	34.7
CodeT5 220M	71.9	65.5	88.8	69.8	68.6	64.5	71.5	67.8	39.3
CodeT5+ 220M	77.7	70.8	92.4	75.6	76.1	69.8	77.1	72.7	43.3
CodeT5+ 770M	78.0	71.3	92.7	75.8	76.2	70.1	77.4	74.0	44.7

Filling-in-the-Middle

LLM Training Objectives

def minimize_in_graph(build_loss_fn, num_steps=200, optimizer=None):				
Args:	 (
num_steps: number of gradient descent steps to perform.	larget			
optimizer: an optimizer to use when minimizing the loss function. If None, will use Adam				
optimizer = tf.compat.v1.train.AdamOptimizer(0.1) if optimizer is None else optimizer				
minimize_op = tf.compat.v1.while_loop(
cond=lambda step: step < num_steps.				
body=train_loop_body,	I Suffix			
loop_vars=[tf.constant(0)]. return_same_structure=True)[0]				

return minimize_op

[Donahue+ 2020, Aghajanyan+ 2022, ours, Bavarian+ 2022]

Causal Masking / FIM Objective

Training

Original Document

```
def count_words(filename: str) -> Dict[str, int]:
    """Count the number of occurrences of each word in the file."""
    with open(filename, 'r') as f:
        word_counts = {}
        for line in f:
            for word in line.split():
                if word in word_counts:
                    word_counts[word] += 1
                else:
                    word_counts[word] = 1
        return word_counts
```

Masked Document

[Donahue et al. 2020, Aghajanyan et al. 2022, Fried et al. 2022, Bavarian et al. 20

InCoder: Model Training

- Training Data
 - 600K permissively-licensed repositories from GitHub & GitLab. ~150GB total
 - <u>StackOverflow: questions, answers,</u> <u>comments. ~50GB</u>
- Models
 - Unidirectional, decoder-only Transformer
 - 1B model: ~1 week on 128 V100s
 - 6B model: ~3 weeks on 240 V100s

Other Infilling Code Models

	SantaCoder: don't reach for the stars! 🌟				
Efficient Training of Language Models to Fill in the Middle	Loubna Ben Allal*Raymond Li*Denis Kocetkov*Hugging FaceServiceNow ResearchServiceNow Research				
Mohammad Bavarian [*] Heewoo Jun [*] Nikolas Tezak	StarCoder: may the source be with you!				
John Schulman Christine McLeavey Jerry Tworek Mark Chen					
OpenAI	Raymond Li ² Loubna Ben Allal ¹ Yangtian Zi ⁴ Niklas Muennighoff ¹ Denis Kocetka Chenghao Mou ⁵ Marc Marone ⁸ Christopher Akiki ^{9,10} Jia Li ⁵ Jenny Chim ¹¹ Qian J	ov ² Liu ¹³			

Code Llama: Open Foundation Models for Code

Baptiste Rozière[†], Jonas Gehring[†], Fabian Gloeckle^{†,*}, Sten Sootla[†], Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, Gabriel Synnaeve[†]

CODEGEN2: LESSONS FOR TRAINING LLMS ON PRO-GRAMMING AND NATURAL LANGUAGES

Erik Nijkamp, Hiroaki Hayashi, Caiming Xiong, Silvio Savarese, Yingbo Zhou

Codex

- Typically trained on lots of code from GitHub, often mixed with text
- Codex (Chen et al. 2021): OpenAl continues to train GPT-3 12B on 160GB of Python data from GitHub
- All GPT 3.5 models are trained on mixtures of code and text. https://platform.openai.com/docs/model-index-for-researchers
- Many open-source models since then follow this recipe (PolyCoder, CodeGen, StarCoder)

Codex: Scaling Laws

Codex: "HumanEval" Benchmark

- Evaluation: test case execution
- 164 hand-written examples
- Why human-written?
 - "It is important for these tasks to be hand-written, since our models are trained on a large fraction of GitHub, which already contains solutions to problems from a variety of sources."
- Optimizing BLEU != Improving Functional Correctness

def solution(lst):

"""Given a non-empty list of integers, return the sum of all of the odd elements that are in even positions.

Examples

solution([5, 8, 7, 1]) =⇒12
solution([3, 3, 3, 3, 3]) =⇒9
solution([30, 13, 24, 321]) =⇒0
"""

return sum(lst[i] for i in range(0,len(lst)) if i % 2 == 0 and lst[i] % 2 == 1)

DeepSeek Coder

- 1.3B, 6.7B, and 33B parameter models
- Trained from scratch on 2 Trillion tokens of code from 87 languages
- FIM loss, and 16K context length

DeepSeek Coder: Repo-Level Context

- Parse file dependencies and arrange repo files in the context window using a topological ordering.
- Theoretically can handle 64K tokens, but "empirical observations suggest that the model delivers its most reliable outputs within a 16K token range"

Deepseek Coder: High-quality data matters

MBPP: Mostly Basic Python Programs

- Similar to HumanEval, but a bit easier
- 974 short Python problems, written by crowdworkers
 - 58% mathematical, 43% list processing, 19% string processing

Austin et al. 202

HumanEval Looks Like Toy Examples?

HumanEval Examples

def incr_list(l: list):

"""Return list with elements incremented by 1. >>> incr_list([1, 2, 3]) [2, 3, 4] >>> incr_list([5, 3, 5, 2, 3, 3, 9, 0, 123]) [6, 4, 6, 3, 4, 4, 10, 1, 124]

return [i + 1 for i in 1]

def solution(lst):

"""Given a non-empty list of integers, return the sum of all of the odd elements that are in even positions.

Examples

solution([5, 8, 7, 1]) =⇒12 solution([3, 3, 3, 3, 3]) =⇒9 solution([30, 13, 24, 321]) =⇒0 -----

return sum(lst[i] for i in range(0, len(lst)) if i % 2 == 0 and lst[i] % 2 == 1)

 Real-World Development Code

Asking the user for input until they give a valid response

Asked 9 years, 6 months ago Modified 1 year, 5 months ago Viewed 1.0m times

transformers Public

I am writing a program that accepts user input. ۰ #note: Python 2.7 users should use `raw_input`, the equivalent of 3.X's `input` 750 age = int(input("Please enter your age: ")) if age >= 18: print("You are able to vote in the United States!") else:

⊙ Watch 1.1k + ¥ Fork 22.9k + 🚖 Starred 114k +

ming tensorflow pytorch r speech-recognition flax pretrained-models ala da library el hacktoberfest rch-transformers model-hub

print("You are not able to vote in the United States.")

P	main - P 262 bra	nches 🛇 139 tags	Go to file Add file -	⇔ Code +	About
-	hi-sushanta Removed	the redundant SiLUActivation class. (#27136) =	✓ 4991216 1 hour ago ③1	4,388 commits	Transformers: State-of-the-art Machine Learning for Pytorch,
	.circleci	Limit to inferior fsspec version (#27010)		last week	2 busined and SAX.
	.github	Dev version		2 hours ago	Proggingrace.co/transformers
80	docker	[core / Quantization] AWQ integration	on (#27045)	2 days ago	natural-language-processing
-	docs	translate peft.md to chinese (#27215)		2 hours ago	deep-learning tensorflow pytorch
-	examples	Dev version		2 hours ago	transformer speech-recognition seg2seg flax pretrained-models
-	model_cards	Update URL for Hub PR docs (#17532)		last year	language-models nip-library
-	notebooks	Update README.md (#25941)		2 months ago	language-model hacktoberfest be
-	entinte	Els etals hot for locked leaver (#16711)		Zumake son	jax pytoren-transformers model-e

SWE-Bench: Solving GitHub Issues

Model Input

Gold Patch

ninx/ext/napoleon/docstring.py
<pre>def _parse_other_parameters_section(self, section: str) -> List[str]:</pre>
<pre>return selfformat_fields(_('Other Parameters'), selfconsume_fields())</pre>
<pre>if selfconfig.napoleon_use_param:</pre>
Allow to declare multiple parameters at once (ex: x, y: int)
<pre>fields = selfconsume_fields(multiple=True)</pre>
<pre>return selfformat_docutils_params(fields)</pre>
else:
<pre>fields = selfconsume_fields()</pre>
<pre>return selfformat_fields(_('Other Parameters'), fields)</pre>

Generated Patch

sphinx/ext/napoleon/docstring.py

def _parse_other_parameters_section(self, section: str) -> List[str]:
 return self._format_fields(_('Other Parameters'), self._consume_fields())
 return self._format_docutils_params(self._consume_fields())

Generated Patch Test Results

PASSED	NumpyDocstringTest	<pre>(test_yield_types)</pre>
PASSED	TestNumpyDocstring	<pre>(test_escape_args_and_kwargs 1)</pre>
PASSED	TestNumpyDocstring	<pre>(test_escape_args_and_kwargs 2)</pre>
PASSED	TestNumpyDocstring	<pre>(test_escape_args_and_kwargs 3)</pre>
PASSED	TestNumpyDocstring	<pre>(test_pep526_annotations)</pre>
FAILED	NumpyDocstringTest	(test_parameters_with_class_reference
FAILED	TestNumpyDocstring	<pre>(test_token_type_invalid)</pre>
===== 2	failed, 45 passed,	8 warnings in 5.16s =====

Figure 6: We show an example of an formatted task instance, a model prediction, and the testing framework logs. Results and inputs are stylized for readability. In the gold and generated patch file, red-highlighted lines represent deletions and green-highlighted lines represent additions.

https://www.swebench.com/

SWE-Bench Leaderboard

Leaderboard

Lite Verified Full					
Model	% Resolved	Date	Logs	Trajs	Site
0 Gru(2024-08-24)	45.20	2024-08-24	Ø	Ø	Ø
💩 Honeycomb	40.60	2024-08-20	O	O	O
🍐 Amazon Q Developer Agent (v20240719-dev)	38.80	2024-07-21	Ø	O	O
AutoCodeRover (v20240620) + GPT 4o (2024–05–13)	38.40	2024-06-28	O	-	O
Factory Code Droid	37.00	2024-06-17	Ð	-	O
🤠 🗹 SWE-agent + Claude 3.5 Sonnet	33.60	2024-06-20	O	O	-
🤠 🗹 AppMap Navie + GPT 4o (2024-05-13)	26.20	2024-06-15	Ø	-	O
Amazon Q Developer Agent (v20240430-dev)	25.60	2024-05-09	O	-	O
EPAM AI/Run Developer Agent + GPT4o	24.00	2024-08-20	Ø	O	O
🤠 🗹 SWE-agent + GPT 40 (2024-05-13)	23.20	2024-07-28	O	O	O
🤠 🗹 SWE-agent + GPT 4 (1106)	22.40	2024-04-02	Ð	O	O
🤠 🗹 SWE-agent + Claude 3 Opus	18.20	2024-04-02	O	O	-
🤠 🗹 RAG + Claude 3 Opus	7.00	2024-04-02	Ø	-	Ø
🤠 🗹 RAG + Claude 2	4.40	2023-10-10	O	-	-
🤠 🗹 RAG + GPT 4 (1106)	2.80	2024-04-02	Ø	-	-
🤠 🗹 RAG + SWE-Llama 7B	1.40	2023-10-10	O	-	-
🤠 🗹 RAG + SWE-Llama 13B	1.20	2023-10-10	O	-	-
🤠 🗹 RAG + ChatGPT 3.5	0.40	2023-10-10	Ø	-	-

We will cover more in Language Agents class!

Math Language Models

Chain-of-Thought (CoT)

Standard Prompting

Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Model Output

A: The answer is 27.

Chain of Thought Prompting

Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Model Output

A: The cafeteria had 23 apples originally. They used 20 to make lunch. So they had 23 - 20 = 3. They bought 6 more apples, so they have 3 + 6 = 9. The answer is 9.

GSM8K (Cobbe et al., 2021)

• Middle school math word problems

Problem: Beth bakes 4, 2 dozen batches of cookies in a week. If these cookies are shared amongst 16 people equally, how many cookies does each person consume?

Solution: Beth bakes 4 2 dozen batches of cookies for a total of 4*2 = <<4*2=8>>8 dozen cookies

There are 12 cookies in a dozen and she makes 8 dozen cookies for a total of 12*8 = <<12*8=96>>96 cookies

She splits the 96 cookies equally amongst 16 people so they each eat 96/16 = <<96/16=6>>6 cookies

Final Answer: 6

Problem: Mrs. Lim milks her cows twice a day. Yesterday morning, she got 68 gallons of milk and in the evening, she got 82 gallons. This morning, she got 18 gallons fewer than she had yesterday morning. After selling some gallons of milk in the afternoon, Mrs. Lim has only 24 gallons left. How much was her revenue for the milk if each gallon costs \$3.50? Mrs. Lim got 68 gallons - 18 gallons = <<68-18=50>>50 gallons this morning. So she was able to get a total of 68 gallons + 82 gallons + 50 gallons = <<68+82+50=200>>200 gallons. She was able to sell 200 gallons - 24 gallons = <<200-24=176>>176 gallons. Thus, her total revenue for the milk is \$3.50/gallon x 176 gallons = \$<<3.50*176=616>>616. Final Answer: 616

Problem: Tina buys 3 12-packs of soda for a party. Including Tina, 6 people are at the party. Half of the people at the party have 3 sodas each, 2 of the people have 4, and 1 person has 5. How many sodas are left over when the party is over?
Solution: Tina buys 3 12-packs of soda, for 3*12= <<3*12=36>>36 sodas
6 people attend the party, so half of them is 6/2= <<6/2=3>>3 people
Each of those people drinks 3 sodas, so they drink 3*3=<3*3=9>9 sodas
Two people drink 4 sodas, which means they drink 2*4=<4*2=8>>8 sodas
With one person drinking 5, that brings the total drank to 5+9+8+3= <<5+9+8+3=25>>25 sodas
As Tina started off with 36 sodas, that means there are 36-25=<<36-25=11>>11 sodas left
Final Answer: 11

MATH (Hendricks et al., 2021)

Competition mathematics problems

MATH Dataset (Ours) **Problem:** Tom has a red marble, a green marble, a blue marble, and three identical yellow marbles. How many different groups of two marbles can Tom choose?

Solution: There are two cases here: either Tom chooses two yellow marbles (1 result), or he chooses two marbles of different colors $\binom{4}{2} = 6$ results). The total number of distinct pairs of marbles Tom can choose is $1 + 6 = \boxed{7}$.

Problem: The equation $x^2 + 2x = i$ has two complex solutions. Determine the product of their real parts.

Solution: Complete the square by adding 1 to each side. Then $(x+1)^2 = 1 + i = e^{\frac{i\pi}{4}}\sqrt{2}$, so $x+1 = \pm e^{\frac{i\pi}{8}}\sqrt[4]{2}$. The desired product is then $\left(-1 + \cos\left(\frac{\pi}{8}\right)\sqrt[4]{2}\right)\left(-1 - \cos\left(\frac{\pi}{8}\right)\sqrt[4]{2}\right) = 1 - \cos^2\left(\frac{\pi}{8}\right)\sqrt{2} = 1 - \frac{\left(1 + \cos\left(\frac{\pi}{4}\right)\right)}{2}\sqrt{2} = \left[\frac{1 - \sqrt{2}}{2}\right]$.

- Step-by-step solutions written in LATEX and natural language.
- Models are tasked with generating tokens to construct the final (boxed)

Math Pre-training: Minerva

Data source	Proportion of data	Tokens	Present during pretraining
Math Web Pages	47.5%	17.5B	No
arXiv	47.5%	21.0B	No
General Natural Language Data	5%	>100B	Yes

- Models were trained on a dataset of 38.5B tokens from webpages filtered for mathematical content and papers from the arXiv preprint server.
- The dataset includes general natural language data, which is the same as the one used for pretraining PaLM.
- Mathematical webpages were processed to remove most HTML tags while preserving MathJax expressions, LATEX symbols, and formatting.

Minerva Performance

	MATH	OCWCourses	GSM8k	MMLU-STEM
PaLM 8B	1.5%	1.5%	4.1%	22.0%
Minerva 8B	14.1%	7.7%	16.2%	35.6%
Minerva 8B, maj1@k	25.4%	12.5%	28.4%	43.4%
PaLM 62B	4.4%	5.9%	33.0%	39.1%
Minerva 62B	27.6%	12.9%	52.4%	53.9%
Minerva 62B, maj10k	43.4%	23.5%	68.5%	63.5%
PaLM 540B	8.8%	7.1%	56.5%	58.7%
Minerva 540B	33.6%	17.6%	58.8%	63.9%
Minerva 540B, maj1@k	50.3%	30.8%	78.5%	75.0%
OpenAI davinci-002	19.1%	14.8%	-	-
Published SOTA	6.9%	<i>u</i>	$74.4\%^b$	$54.9\%^{c}$

Inference-Time Techniques

Figure 6: Accuracy as a function of k, the number of samples per task. Majority voting performance saturates quickly while pass@k seems to continue improving slowly. Accuracies were computed using exact string match (without SymPy processing).

We will cover more in Inference Algorithm class!

LLEMMA: An open LM for Math

LLEMMA improves with a modest amount of math-specific compute

https://arxiv.org/pdf/2310.10631

LLEMMA Data: Proof-Pile-2

			Dataset	Tokens	Open	
Model	Adaptation tokens Open		Minerva Dataset	38.5B	×	
Minerva-8b Minerva-62b	164B 109B	× ×	Proof-Pile-2 (ours) Code (AlgebraicStack)	55B 11B	1	
LLEMMA-7b (ours) LLEMMA-34b (ours)	200B 50B	5	OpenWebMath (Paster et al., 2023)) ArXiv (Computer, 2023))	15B 29B	1	

Figure 2: Comparison of LLEMMA and Minerva training

OpenWebMath

Types of OpenWebMath documents

Subjects of OpenWebMath documents

LLEMMA Performance

LLEMMA Performance

LLEMMA vs. Llama 2 as initialization for finetuning on MetaMathQA

DeepSeek Math

DeepSeekMath Corpus

DeepSeekMath Performance

		English Benchmarks						
Model	Size	GSM8K	MATH	OCW	SAT	MMLU STEM		
		Closed-Source Base Model				odel		
Minerva	7B	16.2%	14.1%	7.7%	-	35.6%		
Minerva	62B	52.4%	27.6%	12.0%	-	53.9%		
Minerva	540B	58.8%	33.6%	17.6%	-	63.9%		
		Open-Source Base Model			del			
Mistral	7B	40.3%	14.3%	9.2%	71.9%	51.1%		
Llemma	7B	37.4%	18.1%	6.3%	59.4%	43.1%		
Llemma	34B	54.0%	25.3%	10.3%	71.9%	52.9%		
DeepSeekMath-Base	7B	64.2%	36.2%	15.4%	84.4%	56.5%		

Training on Code Improves Math

Training Setting	Training Tokens			w/o Tool Use			
inuming second	General	Code	Math	GSM8K	MATH	CMATH	
No Continual Training	_	_	_	2.9%	3.0%	12.3%	
	Two-Stage Training						
Stage 1: General Training	400B	_	_	2.9%	3.2%	14.8%	
Stage 2: Math Training	-	-	150B	19.1%	14.4%	37.2%	
Stage 1: Code Training	_	400B	_	5.9%	3.6%	19.9%	
Stage 2: Math Training	-	-	150B	21.9%	15.3%	39.7%	
			One-	One-Stage Training			
Math Training	_	_	150B	20.5%	13.1%	37.6%	
Code & Math Mixed Training	_	400B	150B	17.6%	12.1%	36.3%	

Write Code to Solve Math Problems

https://arxiv.org/pdf/2211.10435 https://arxiv.org/abs/2211.12588

MAmmoTH: Hybrid Thoughts Instruction Tuning

https://arxiv.org/pdf/2309.05653

Questions?