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NLP systems are now deployed at scale

OpenAl's ChatGPT now has 100 million
weekly active users
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https://techcrunch.com/2023/11/06/openais-chatgpt-now-has-100-million-weekly-active-users/

We know that training big models is expensive

Time Power Carbon Emitted
(GPU hours) Consumption (W) (tCO2eq)
7B 184320 400 31.22
Liamao L3B 368640 400 62.44
34B 1038336 350 153.90
70B 1720320 400 291.42
Total 3311616 539.00

Table 2: CO,, emissions during pretraining. Time: total GPU time required for training each model

Llama 2: Open Foundation and Fine-Tuned Chat Models. Touvron et al. 2023.



But Inference IS even more expensive

More importantly, inference costs far exceed training costs

when deploying a model at any reasonable scale. In fact, the costs to inference

ChatGPT exceed the training costs on a weekly basis.

https://www.semianalysis.com/p/the-inference-cost-of-search-disruption



https://www.semianalysis.com/p/the-inference-cost-of-search-disruption

Models aren’t getting much smaller
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Main Question

e [he top models for most
NLP tasks are massive
¢ How can we cheaply, efficiently, and equitably deploy

NLP systems without sacrificing performance?



Answer: Model Compression



Answer: Model Compression

1. Quantization

e Keep the model the same but reduce the number of bits
2. Pruning

* remove parts of a model while retaining performance
3. Distillation

e train a smaller model to imitate the bigger model



Why is this even possible?



Overparameterized models are easier to optimize
(Du and Lee 2018)

networks. For a £ hidden node shallow net-
work with quadratic activation and 7 training
data points, we show as long as £k > v/2n, over-
parametrization enables local search algorithms
to find a globally optimal solution for general
smooth and convex loss functions. Further, de-



Quantization



Post-Training Quantization

Example: Train a 65B-param model with whatever precision you
like, then quantize the weights

65B parameters * 4b = 260GB
65B parameters * 2b = 130GB

65B parameters * 1b = 65GB NN
65B parameters * 1 bit =8.1GB B

Model




Floating point numbers

e Floating point number is stored as (-1)s M 2E
e Sign bits
* Fractional part M = frac

 EXxponential part E = exp - bias

s |exp frac

Source: Lecture 4 from 15-213, taught in Summer 2022



https://www.cs.cmu.edu/afs/cs/academic/class/15213-m22/www/lectures/04-float.pdf

Reduced-precision floating point
types

float16 (fp16)
sign exponent (5 bit) fraction (10 bit)
| | | |
0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0
15 14 10 9 0
bfloat16
sign exponent (8 bit) fraction (7 bit)
| | | | |
0 O 1 1 1 1 1 0 o0 0 1 0 0 0 0 0
15 14 7 6 0



INt8 quantization

e Absolute Maximum (absmax) quantization:

127 - X 16

 max(|Xs16,,)

 This scales inputs to [-127, 127]

Xig =

[ 0.5, 20, -0.0001, -.01, -0.1 ]
* Maximum entry is 20

. round(127/20 *[ 0.5, 20, -0.0001, -.01, -0.1 ]) ->
[3,127,0,0, -1]



Extreme Example: Binarized Neural Networks
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Extreme Example: Binarized Neural Networks




Extreme Example: Binarized Neural Networks

Full Precision




Frequency

Model-Aware Quantization: GOBO

(Zadeh et al. 2020)

BERT weights in each layer tend to lie on a Gaussian

Only small fraction of weights in each layer are in the tails of the distribution

Quantize the 99.9% of weights in the body of the disribution into 8 buckets
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Hardware Concerns
(Shen et al. 2019)

e Not all data types (e.g. “Int3”) are supported by most hardware

e Pylorch only supports certain data types (e.g. no support for Int4)

yTorch Docs > Quantization
Static Quantization Dynamic Quantization
nn.Linear Y Y
nn.Conv1d/2d/3d Y N
nn.LSTM Y (through Y
custom modules)
nn.GRU N Y
nn.RNNCell N Y
nn.GRUCell N Y
nn.LSTMCell N Y
nn.EmbeddingBag Y (activations are in fp32) Y
nn.Embedding Y Y
nn.MultiheadAttention Y (through custom modules) Not supported
Un-changed, computations stay in
Activations Broadly supported & P y

fp32



Hardware Concerns
(Shen et al. 2019)

Not all data types (e.g. “Int3”) are supported by most hardware
Py Torch only supports certain data types (e.g. no support for Int4)

Some gquantization methods require writing bespoke hardware

accelerators

Model-Aware Quantization: GOBO
(Zadeh et al. 2020)

* BERT weights in each layer lie on a Gaussian

* Only small fraction of weights in each layer are in the tails of the distribution
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* Quantize the 99.9% of weights in the body of the disribution into 8 buckets

* Do not quantize the remaining 0.01%




Quantization-Aware Training



Binarized Neural Networks
(Courbariaux et al. 2016)

e \Weights are -1 or 1 everywhere
e Activations are also binary

e Defined stochastically: choose O with probability o(x) and 1

with probability 1 - o(x)

e Backprop is also discretized



Binarized Neural Networks

(Courbariaux et al. 2016)

Data set MNIST SVHN CIFAR-10
Binarized activations+weights, during training and test
BNN (Torch7) 1.40% 2.53% 10.15%
BNN (Theano) 0.96% 2.80% 11.40%
Committee Machines’ Array (Baldassi et al., 2015) 1.35% - -
Binarized weights, during training and test
BinaryConnect (Courbariaux et al., 2015) 1.294 0.08% 2.30% 9.90%
Binarized activations+weights, during test
EBP (Cheng et al., 2015) 2.2+ 0.1% - -
Bitwise DNNs (Kim & Smaragdis, 2016) 1.33% - -
No binarization (standard results)
Mazxout Networks (Goodfellow et al.) 0.94% 2.47% 11.68%
Network in Network (Lin et al.) - 2.35% 10.41%
Gated pooling (Lee et al., 2015) - 1.69% 7.62%




| ayer-by-Layer Quantization-

Aware Distillation
(Yao et al. 2022)

e |nitialize the quantized network with the same architecture as
the original
e Jrain each layer of the quantized network to mimic the output of

its full-precision counterpart



Q-LORA

(Dettmers et al. 2023)

o Further compress memory requirements for training by
e 4-bit quantization of the model (later class for details)

« Use of GPU memory paging to prevent OOM

Full Finetuning LoRA QLoRA
(No Adapters)

State
(32 bit)

JR S i oy oy
|||

(16 bit)

16-bit Transformer 16-bit Transformer 4-bit Transformer Paging Flow —

e Can train a 65B model on a 48GB GPU!



Pruning



Pruning

Remove parameters from the model after training



Pruning vs Quantization

* Quantization: no parameters are changed”, up to k bits of
precision
* Pruning: a number of parameters are set to zero, the rest

are unchanged



Magnitude Pruning
(Han et al. 2015, See et al. 20106)

e /ero out the X% of parameters with least magnitude

o A type of unstructured pruning

20 T % > —X== g — g m — = = e = ===
L
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pruned and retrained

—— sparse from the beginning
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percentage pruned

0



1X|2

Weights and activations

Wand

c

(Sun et al. 2023)

Magnitude Pruning

S — |W|
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Problem with Unstructured Pruning

e Unstructured sparsity doesn’t necessarily improve
memory or speed
e Hardware that supports sparse data structures and

multiplications are needed

e [hisis currently an active area of work but not

common in commodity hardware



Structured Pruning
(Xia et al. 2022)

Remove entire components

Remaining components aren’t pruned
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Are Sixteen Heads Really Better than One”

Layer

Head

(Michel and Neubig 2019)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

NN H W=

0.03 0.07 0.05 -0.06 0.03 -0.53 0.09 -0.33 0.06 0.03 0.11 0.04 0.01 -0.04 0.04 0.00
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Pruning w/ Forward Passes
(Dery et al. 2024)

e Structured pruning big models requires a lot of memory
e (Can we avoid using gradients”
e |dea
1. measure the performance of a model with different
modules masked

2. learn the impact of each module mask via regression



Pruning w/ Forward Passes
(Dery et al. 2024)

Model ~Size Fine-tune PPL  Speedup

Phi-2 3B v 8.69 1.24 %
LLLaMA-2 7B Pruned

Wanda 2:4 3B X 10.52 1.14x

v 8.34 0.75 %

Bonsai 3B v 8.89 1.58 %




Distillation



Distillation

e [rain one model (the “student”) to replicate

the behavior of another model (the “teacher”)



Distillation vs Quantization vs Pruning

e Quantization: no parameters are changed*, up to k bits of
precision

* Pruning: a number of parameters are set to zero, the rest
are unchanged

e Distillation: ~all parameters are changed



Pre-L.LLM Distillation

e [he teacher works as a “labeler”



Weak Supervision
(Yarowski 1995)

e Pseudo-labels are targets generated for unlabeled text

e \Ve can train on pseudo-labels as though they are labels
e T[hisideais old and used in many ideas

e Self-training (Yarowski 1995)

e (Co-training (Blum and Mitchell 1998)

e Meta Pseudo Labels (Pham et al 2020)



Hard vs Soft Targets
(Hinton et al 2015)

Hard Targets

> g g <«
_[EHCOderTeaCher]_’ E_' Positive

<> I <
_[ EnCOderTeaCher]_' i_'

Soft Targets
& B Positive | 0.9
> g g <
_(EHCOderTeacher ]—» E—> Neutral |0.08
= Negative | 0.01
System & training set Train Frame Accuracy | Test Frame Accuracy
Baseline (100% of training set) 63.4% 58.9%
Baseline (3% of training set) 67.3% 44.5%
Soft Targets (3% of training set) 65.4% 57.0%




Sequence-Level Distillation
(Kim and Rush 2016)

e (Can we extend soft targets to sequences?
e 2 ways:
o |Vord-level distillation: match distribution of words at
each step with the teacher’s distribution
e Sequence-level distillation: maximize probability of the

output generated by the teacher

J |V

Lworpkp = — » ¥ q(t; =k|s, t<;) x Lseqkp ~ — Y 1{t =F}logp(t|s)
j=1 k=1 teT

logp(t; = k|s,t<;) = —logp(t=y]s)

L = (1 — a)LseeNLL + 0LSEQKD



Born Again Neural Networks
(Furlanello, Lipton, et al 2018)

&3
] [s] - n[;] EJ _______ [;

% o]— C
Step 0 * Step 1

Test error on CIFAR-100

Network Teacher | BAN
DenseNet-112-33 18.25 16.95
DenseNet-90-60 17.69 16.69
DenseNet-80-80 17.16 16.36
DenseNet-80-120 16.87 16.00




Distilling step-by-step
(Hsieh et al 2023)

e (Chain-of-Thought is a common prompting strategy

e [rain your model to generate both a label and a rationale

(with the latter giving additional supervision)

L = Elabel )‘['rationale

—8— DISTILLING STEP-BY-STEP STANDARD FINETUNING ~ -—-—- STANDARD FINETUNING (FULL SET)
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Figure 4: We compare Distilling step-by-step and Standard finetuning using 220M T5 models on varying sizes of
human-labeled datasets. On all datasets, Distilling step-by-step is able to outperform Standard finetuning, trained on
the full dataset, by using much less training examples (e.g., 12.5% of the full e-SNLI dataset).



Process Supervision
(Lightman et al 2023)

e A “reward model” is used to grade the effectiveness of
each step in a multi-step reasoning procedure, unrolling

each training example into multiple learning steps

e [his requires process-level reward models, but a big LM
can be used for this (see ConiferLM, Sun et al 2024)



Post-LLLM Distillation

e [he teacher can generate inputs and/or outputs



EXploiting lask Asymmetry
(Josifoski et al 2023)
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Self-Instruct
(Wang et al 2022)

e Use distillation to train a vanilla LM to follow instructions by

synthesizing and pseudo-labeling instructions using itself

Dataset Generation

 |tis possible to automatically generate instruction
tuning datasets, e.g. self-instruct (Wang et al. 2022)

175 seed tasks with Task Pool Step 1: Instruction Generation S’treu ':lf }g:::ﬁf::i:::“
1 instruction and - -
1 instance per task \ainf \an
. 7
- LM
= Nt ( Instruction : Give me a quote from a LM
(= SN—’ famous person on this topic.
0 - N
Step 3: Instance Generation
2 Tusk Yes
| Instruction : Find out if the given text is in favor of or against abortion.
Step 4: Filteri .
P HHering Class Label: Pro-abortion W
Input: Text: I believe that women should have the right to choose whether or not Output-first LM
they want to have an abortion. ) g
Z  Task .
Instruction : Give me a quote from a famous person on this topic. | No
Input: Topic: The importance of being honest.
\{| Output: "Honesty is the first chapter in the book of wisdom." - Thomas Jefferson | Input-first

e Can be used to train chain-of-thought — ORCA (Mukherjee et al. 2023)

¢ Can be used to make instructions more complex — Evol-Instruct (Xu et al. 2023)




Prompt2Model
(Viswanathan et al 2023)

Input: Prompt (task description + optional examples)

Answer questions given context from a
~ relevant Wikipedia article.

Prompt2Model

Retrieve Generate Retrieve
Data Data Pretrained model

Q Output: Deployment-ready model
BERT Score: 94.0, ChrF++: 58.9, EM: 61.5

Question: What does LPC stand for?
K Context: The psychoacoustic masking codec was...

A

Answer: linear predictive coding




Retrieval-Augmented Distillation
(Gandhi et al 2024, Ge et al 2024, Divekar and Durrett 2024)

Input: Prompt (task description + optional examples)

Answer questions given context from a
~ relevant Wikipedia article.

Retrieve Generate task-specific data

. | Finetune
Q Documents conditioned on retrieved data



Retrieval-Augmented Distillation
(Gandhi et al 2024, Ge et al 2024, Divekar and Durrett 2024)

Input: Prompt (task description + optional examples)

Answer questions given context from a
~ relevant Wikipedia article.

Retrieve Generate task-specific data |
L | Finetune
Q Documents conditioned on retrieved data

Retrieved data could be:
e  [Entire existing datasets from Hugging Face (Gandhi et al 2024)
° Individual rows from existing datasets (Ge et al 2024)
o Documents from the internet (Divekar and Durrett 2024)




Pretraining on Synthetic Data

(Eldan et al 2023, Gunasekar et al 2023, Li et al 2023,
Abdin et al 2024)

e Your model for the minllama assignment was pretrained on
GPT-4-generated “children’s story” data (Eldan et al 2023)
e (Generating synthetic data results in lots of fluent text
with near-guaranteed coverage of a fixed vocabulary

e [he Phi models from Microsoft extends this to actual tasks

cy (%)

n HumanEval

6 17
11
o J
350M, 26B tokens 350M, 76B tokens 1.3B, 51-76B tokens
(135 GPU hours) (410 GPU hours) (770-1090 GPU hours)

=
oF

phi-1-base | &

Pass@]1 accura

B The Stack + B CodeTextbook M CodeTextbook — CodeExercises



“Al models collapse when trained on recursively

generated data”
(Shumailov et al 2024)

Setup:
* T[rain a language model from scratch on WikiText for one epoch

e At each subseqguent epoch, have the model generate

completely new data (with 10% of original data kept, and train

on this data instead

Perplexity of generated data points evaluated by Real wikitext2 test dataset

model trained with real wikitext2 -~ Run 1
Run 2
42 A K
0.30 - Generation 0 Ko -%-Run3
: . R -3- Run 4
Generation 1 404 :'?;i‘ N
Generation 2 N N Run S
Generation 3 = I \ N
2 4 ] X4 \X\
ey Generation 5 X 38 i I SUR NG R
] QL N fo o —, R o R
< Generation 9 o i A EEE R
8 g 361
a
il
341 &
100 10° 102 Real 1 2 3 4 5 6 7 8 9

Perplexity of generated data points Trained on dataset from a given generation



Open Questions in Distillation

e How can you learn to be better than your teacher?

e How can Al and human “teachers” collaborate optimally®?
e How can we avoid negative feedback loops (like model

collapse)?



Questions?



