
CS11-711 Advanced NLP

Quantization, Pruning, and
Distillation

Vijay Viswanathan and Graham Neubig

Site
https://phontron.com/class/anlp2024/

https://phontron.com/class/anlp2024/

NLP systems are now deployed at scale

Article: TechCrunch (2023)

https://techcrunch.com/2023/11/06/openais-chatgpt-now-has-100-million-weekly-active-users/

We know that training big models is expensive

Llama 2: Open Foundation and Fine-Tuned Chat Models. Touvron et al. 2023.

But inference is even more expensive

https://www.semianalysis.com/p/the-inference-cost-of-search-disruption

https://www.semianalysis.com/p/the-inference-cost-of-search-disruption

Models aren’t getting much smaller

• The top models for most 
NLP tasks are massive

Llama2 (70B)

Main Question

• The top models for most 
NLP tasks are massive

• How can we cheaply, efficiently, and equitably deploy
NLP systems without sacrificing performance?

Answer: Model Compression

1. Quantization

• keep the model the same but reduce the number of bits

2. Pruning

• remove parts of a model while retaining performance

3. Distillation

• train a smaller model to imitate the bigger model

Answer: Model Compression

1. Quantization

1. keep the model the same but give up some precision

2. Pruning

1. remove parts of a model while retaining performance

3. Distillation

1. train a smaller model to imitate the bigger model

Why is this even possible?

Answer: Model Compression

Overparameterized models are easier to optimize
(Du and Lee 2018)

Quantization

Post-Training Quantization
• Example: Train a 65B-param model with whatever precision you

like, then quantize the weights

65B parameters * 4b = 260GB

Model
65B parameters * 2b = 130GB
65B parameters * 1b = 65GB
65B parameters * 1 bit = 8.1GB

Floating point numbers
• Floating point number is stored as (-1)s M 2E

• Sign bit s

• Fractional part M = frac

• Exponential part E = exp - bias

Source: Lecture 4 from 15-213, taught in Summer 2022

https://www.cs.cmu.edu/afs/cs/academic/class/15213-m22/www/lectures/04-float.pdf

Reduced-precision floating point
types

Int8 quantization
• Absolute Maximum (absmax) quantization:

• This scales inputs to [-127, 127]

[0.5, 20, -0.0001, -.01, -0.1]

• Maximum entry is 20

• round(127/20 * [0.5, 20, -0.0001, -.01, -0.1]) ->  
[3, 127, 0, 0, -1]

Extreme Example: Binarized Neural Networks

movie

0.23

0.37

0.84

0.21 0.810.51 0.49

movie

0 01 1

0
0
1

Full Precision

1-Bit

Extreme Example: Binarized Neural Networks

I hate this movie </s>

この 映画 が 嫌い

この 映画 が 嫌い </s>

0.21 0.810.51 0.49

0.79

0.44

0.05

0.73

0.97

0.94

0.83

0.37

0.54

0.20

0.79

0.64

0.23

0.37

0.84

0.03

0.37

0.14

0.39

0.37

0.99

0.03

0.88

0.74

0.73

0.02

0.64

0.81

0.71

0.14

0.93

0.75

0.99

0.41 0.240.63 0.57 0.21 0.490.99 0.65 0.21 0.810.51 0.49 0.23 0.140.46 0.49

0.87 0.680.56 0.0 0.72 0.520.30 0.990.75 0.700.05 0.130.66 0.490.42 0.90

Extreme Example: Binarized Neural Networks

hate this movie

0.83

0.37

0.54

0.20

0.79

0.64

0.23

0.37

0.84

0.41 0.240.63 0.57 0.21 0.490.99 0.65 0.21 0.810.51 0.49

movie movie movie

0 01 1 0 01 1 0 01 1

1
0
1

0
1
1

0
0
1

Full Precision

1-Bit

Model-Aware Quantization: GOBO

(Zadeh et al. 2020)

• BERT weights in each layer tend to lie on a Gaussian

• Only small fraction of weights in each layer are in the tails of the distribution

• Quantize the 99.9% of weights in the body of the disribution into 8 buckets

• Do not quantize the remaining 0.01%

Hardware Concerns

(Shen et al. 2019)

• Not all data types (e.g. “Int3”) are supported by most hardware

• PyTorch only supports certain data types (e.g. no support for Int4)

Hardware Concerns

(Shen et al. 2019)

• Not all data types (e.g. “Int3”) are supported by most hardware

• PyTorch only supports certain data types (e.g. no support for Int4)

• Some quantization methods require writing bespoke hardware

accelerators

Quantization-Aware Training

Binarized Neural Networks

(Courbariaux et al. 2016)

• Weights are -1 or 1 everywhere

• Activations are also binary

• Defined stochastically: choose 0 with probability σ(x) and 1
with probability 1 - σ(x)

• Backprop is also discretized

Binarized Neural Networks

(Courbariaux et al. 2016)

Layer-by-Layer Quantization-
Aware Distillation

(Yao et al. 2022)

• Initialize the quantized network with the same architecture as
the original

• Train each layer of the quantized network to mimic the output of
its full-precision counterpart

Q-LORA

(Dettmers et al. 2023)

• Further compress memory requirements for training by

• 4-bit quantization of the model (later class for details)

• Use of GPU memory paging to prevent OOM

• Can train a 65B model on a 48GB GPU!

Pruning

Pruning
• Remove parameters from the model after training

Pruning vs Quantization
• Quantization: no parameters are changed*, up to k bits of

precision

• Pruning: a number of parameters are set to zero, the rest

are unchanged

Magnitude Pruning

(Han et al. 2015, See et al. 2016)

• Zero out the X% of parameters with least magnitude

• A type of unstructured pruning

Wanda

(Sun et al. 2023)

Problem with Unstructured Pruning

• Unstructured sparsity doesn’t necessarily improve
memory or speed

• Hardware that supports sparse data structures and

multiplications are needed

• This is currently an active area of work but not

common in commodity hardware

Structured Pruning

(Xia et al. 2022)

• Remove entire components

• Remaining components aren’t pruned

Are Sixteen Heads Really Better than One?

(Michel and Neubig 2019)

Pruning w/ Forward Passes

(Dery et al. 2024)

• Structured pruning big models requires a lot of memory

• Can we avoid using gradients?

• Idea

1. measure the performance of a model with different
modules masked

2. learn the impact of each module mask via regression

Pruning w/ Forward Passes

(Dery et al. 2024)

Distillation

Distillation
• Train one model (the “student”) to replicate

the behavior of another model (the “teacher”)

Distillation vs Quantization vs Pruning

• Quantization: no parameters are changed*, up to k bits of
precision

• Pruning: a number of parameters are set to zero, the rest
are unchanged

• Distillation: ~all parameters are changed

Pre-LLM Distillation

• The teacher works as a “labeler”

Weak Supervision

(Yarowski 1995)

• Pseudo-labels are targets generated for unlabeled text

• We can train on pseudo-labels as though they are labels

• This idea is old and used in many ideas

• Self-training (Yarowski 1995)

• Co-training (Blum and Mitchell 1998)

• Meta Pseudo Labels (Pham et al 2020)

Hard vs Soft Targets	

(Hinton et al 2015)

PositiveEncoderTeacher

Positive

Neutral

Negative

0.9

0.08

0.01
EncoderTeacher

EncoderTeacher

Soft Targets

Hard Targets

Sequence-Level Distillation

(Kim and Rush 2016)

• Can we extend soft targets to sequences?

• 2 ways:

• Word-level distillation: match distribution of words at
each step with the teacher’s distribution

• Sequence-level distillation: maximize probability of the
output generated by the teacher

Born Again Neural Networks

(Furlanello, Lipton, et al 2018)

Distilling step-by-step

(Hsieh et al 2023)

• Chain-of-Thought is a common prompting strategy

• Train your model to generate both a label and a rationale

(with the latter giving additional supervision)

Process Supervision

(Lightman et al 2023)

• A “reward model” is used to grade the effectiveness of
each step in a multi-step reasoning procedure, unrolling
each training example into multiple learning steps

• This requires process-level reward models, but a big LM
can be used for this (see ConiferLM, Sun et al 2024)

Post-LLM Distillation

• The teacher can generate inputs and/or outputs

Exploiting Task Asymmetry

(Josifoski et al 2023)

Self-Instruct

(Wang et al 2022)

• Use distillation to train a vanilla LM to follow instructions by
synthesizing and pseudo-labeling instructions using itself

Prompt2Model

(Viswanathan et al 2023)

BERT Score: 94.0, ChrF++: 58.9, EM: 61.5

Retrieve

Pretrained model

Retrieve

Data

Generate

Data

Prompt2Model

Input: Prompt (task description + optional examples)

Output: Deployment-ready model

Question: What does LPC stand for?

Context: The psychoacoustic masking codec was...

Answer: linear predictive coding

Answer questions given context from a
relevant Wikipedia article.

BERT Score: 94.0, ChrF++: 58.9, EM: 61.5

Retrieve

Pretrained model

Retrieve

Data

Generate

Data

Prompt2Model

Input: Prompt (task description + optional examples)

Output: Deployment-ready model

Question: What does LPC stand for?

Context: The psychoacoustic masking codec was...

Answer: linear predictive coding

Answer questions given context from a
relevant Wikipedia article.

Retrieval-Augmented Distillation

(Gandhi et al 2024, Ge et al 2024, Divekar and Durrett 2024)

Retrieve

Pretrained model

Retrieve

Data

Generate

Data

Prompt2Model

Input: Prompt (task description + optional examples)

Answer questions given context from a
relevant Wikipedia article.

Retrieve

Documents

Generate task-specific data 
conditioned on retrieved data

Input: Prompt (task description + optional examples)

Answer questions given context from a
relevant Wikipedia article.

Finetune

Retrieval-Augmented Distillation

(Gandhi et al 2024, Ge et al 2024, Divekar and Durrett 2024)

Retrieve

Pretrained model

Retrieve

Data

Generate

Data

Prompt2Model

Input: Prompt (task description + optional examples)

Answer questions given context from a
relevant Wikipedia article.

Retrieve

Documents

Generate task-specific data 
conditioned on retrieved data

Input: Prompt (task description + optional examples)

Answer questions given context from a
relevant Wikipedia article.

Finetune

Retrieved data could be:

• Entire existing datasets from Hugging Face (Gandhi et al 2024)

• Individual rows from existing datasets (Ge et al 2024)

• Documents from the internet (Divekar and Durrett 2024)

Pretraining on Synthetic Data

(Eldan et al 2023, Gunasekar et al 2023, Li et al 2023,

Abdin et al 2024)

• Your model for the minllama assignment was pretrained on
GPT-4-generated “children’s story” data (Eldan et al 2023)

• Generating synthetic data results in lots of fluent text

with near-guaranteed coverage of a fixed vocabulary

• The Phi models from Microsoft extends this to actual tasks

“AI models collapse when trained on recursively
generated data” 
(Shumailov et al 2024)

• Setup:

• Train a language model from scratch on WikiText for one epoch

• At each subsequent epoch, have the model generate

completely new data (with 10% of original data kept, and train
on this data instead

Open Questions in Distillation

• How can you learn to be better than your teacher?

• How can AI and human “teachers” collaborate optimally?

• How can we avoid negative feedback loops (like model

collapse)?

Questions?

56

