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NLP systems are now deployed at scale

Article: TechCrunch (2023)

https://techcrunch.com/2023/11/06/openais-chatgpt-now-has-100-million-weekly-active-users/


We know that training big models is expensive

Llama 2: Open Foundation and Fine-Tuned Chat Models. Touvron  et al. 2023.



But inference is even more expensive

https://www.semianalysis.com/p/the-inference-cost-of-search-disruption

https://www.semianalysis.com/p/the-inference-cost-of-search-disruption


Models aren’t getting much smaller

• The top models for most 
NLP tasks are massive

Llama2 (70B)



Main Question

• The top models for most 
NLP tasks are massive


• How can we cheaply, efficiently, and equitably deploy 
NLP systems without sacrificing performance?



Answer: Model Compression



1. Quantization

• keep the model the same but reduce the number of bits


2. Pruning

• remove parts of a model while retaining performance


3. Distillation

• train a smaller model to imitate the bigger model

Answer: Model Compression



1. Quantization

1. keep the model the same but give up some precision


2. Pruning

1. remove parts of a model while retaining performance


3. Distillation

1. train a smaller model to imitate the bigger model

Why is this even possible?

Answer: Model Compression



Overparameterized models are easier to optimize 
(Du and Lee 2018)



Quantization



Post-Training Quantization
• Example: Train a 65B-param model with whatever precision you 

like, then quantize the weights

65B parameters * 4b = 260GB

Model
65B parameters * 2b = 130GB
65B parameters * 1b = 65GB
65B parameters * 1 bit = 8.1GB



Floating point numbers
• Floating point number is stored as (-1)s M 2E


• Sign bit s


• Fractional part M = frac


• Exponential part E = exp - bias

Source: Lecture 4 from 15-213, taught in Summer 2022

https://www.cs.cmu.edu/afs/cs/academic/class/15213-m22/www/lectures/04-float.pdf


Reduced-precision floating point  
types



Int8 quantization
• Absolute Maximum (absmax) quantization:

• This scales inputs to [-127, 127]

[ 0.5, 20, -0.0001, -.01, -0.1 ]


• Maximum entry is 20


• round(127/20 * [ 0.5, 20, -0.0001, -.01, -0.1 ]) ->  
[ 3, 127, 0, 0, -1 ]



Extreme Example: Binarized Neural Networks
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Extreme Example: Binarized Neural Networks

I hate this movie </s>

この 映画 が 嫌い

この 映画 が 嫌い </s>
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Extreme Example: Binarized Neural Networks

hate this movie
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Model-Aware Quantization: GOBO

(Zadeh et al. 2020)

• BERT weights in each layer tend to lie on a Gaussian


• Only small fraction of weights in each layer are in the tails of the distribution

• Quantize the 99.9% of weights in the body of the disribution into 8 buckets


• Do not quantize the remaining 0.01%



Hardware Concerns

(Shen et al. 2019)

• Not all data types (e.g. “Int3”) are supported by most hardware

• PyTorch only supports certain data types (e.g. no support for Int4)



Hardware Concerns

(Shen et al. 2019)

• Not all data types (e.g. “Int3”) are supported by most hardware

• PyTorch only supports certain data types (e.g. no support for Int4)

• Some quantization methods require writing bespoke hardware 

accelerators



Quantization-Aware Training



Binarized Neural Networks

(Courbariaux et al. 2016)

• Weights are -1 or 1 everywhere

• Activations are also binary


• Defined stochastically: choose 0 with probability σ(x) and 1 
with probability 1 - σ(x)


• Backprop is also discretized



Binarized Neural Networks

(Courbariaux et al. 2016)



Layer-by-Layer Quantization-
Aware Distillation


(Yao et al. 2022)

• Initialize the quantized network with the same architecture as 
the original


• Train each layer of the quantized network to mimic the output of 
its full-precision counterpart



Q-LORA

(Dettmers et al. 2023)

• Further compress memory requirements for training by

• 4-bit quantization of the model (later class for details)

• Use of GPU memory paging to prevent OOM

• Can train a 65B model on a 48GB GPU!



Pruning



Pruning
• Remove parameters from the model after training



Pruning vs Quantization
• Quantization: no parameters are changed*, up to k bits of 

precision 

• Pruning: a number of parameters are set to zero, the rest 

are unchanged



Magnitude Pruning

(Han et al. 2015, See et al. 2016)

• Zero out the X% of parameters with least magnitude

• A type of unstructured pruning



Wanda

(Sun et al. 2023)



Problem with Unstructured Pruning

• Unstructured sparsity doesn’t necessarily improve 
memory or speed

• Hardware that supports sparse data structures and 

multiplications are needed

• This is currently an active area of work but not 

common in commodity hardware



Structured Pruning

(Xia et al. 2022)

• Remove entire components

• Remaining components aren’t pruned



Are Sixteen Heads Really Better than One?

(Michel and Neubig 2019)



Pruning w/ Forward Passes

(Dery et al. 2024)

• Structured pruning big models requires a lot of memory

• Can we avoid using gradients?

• Idea 

1. measure the performance of a model with different 
modules masked


2. learn the impact of each module mask via regression



Pruning w/ Forward Passes

(Dery et al. 2024)



Distillation



Distillation
• Train one model (the “student”) to replicate 

the behavior of another model (the “teacher”)



Distillation vs Quantization vs Pruning

• Quantization: no parameters are changed*, up to k bits of 
precision 


• Pruning: a number of parameters are set to zero, the rest 
are unchanged


• Distillation: ~all parameters are changed 



Pre-LLM Distillation

• The teacher works as a “labeler”



Weak Supervision

(Yarowski 1995)

• Pseudo-labels are targets generated for unlabeled text

• We can train on pseudo-labels as though they are labels


• This idea is old and used in many ideas

• Self-training (Yarowski 1995)

• Co-training (Blum and Mitchell 1998)

• Meta Pseudo Labels (Pham et al 2020)



Hard vs Soft Targets	 

(Hinton et al 2015)
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Sequence-Level Distillation

(Kim and Rush 2016)

• Can we extend soft targets to sequences?

• 2 ways:


• Word-level distillation: match distribution of words at 
each step with the teacher’s distribution


• Sequence-level distillation: maximize probability of the 
output generated by the teacher



Born Again Neural Networks

(Furlanello, Lipton, et al 2018)



Distilling step-by-step

(Hsieh et al 2023)

• Chain-of-Thought is a common prompting strategy

• Train your model to generate both a label and a rationale 

(with the latter giving additional supervision)



Process Supervision

(Lightman et al 2023)

• A “reward model” is used to grade the effectiveness of 
each step in a multi-step reasoning procedure, unrolling 
each training example into multiple learning steps 


• This requires process-level reward models, but a big LM 
can be used for this (see ConiferLM, Sun et al 2024)



Post-LLM Distillation

• The teacher can generate inputs and/or outputs



Exploiting Task Asymmetry

(Josifoski et al 2023)



Self-Instruct

(Wang et al 2022)

• Use distillation to train a vanilla LM to follow instructions by 
synthesizing and pseudo-labeling instructions using itself



Prompt2Model

(Viswanathan et al 2023)

BERT Score: 94.0, ChrF++: 58.9, EM: 61.5

Retrieve

Pretrained model

Retrieve

Data

Generate

Data

Prompt2Model

Input: Prompt (task description + optional examples)

Output: Deployment-ready model

Question: What does LPC stand for?

Context: The psychoacoustic masking codec was...

Answer: linear predictive coding

Answer questions given context from a 
relevant Wikipedia article.
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Prompt2Model

Input: Prompt (task description + optional examples)

Output: Deployment-ready model

Question: What does LPC stand for?

Context: The psychoacoustic masking codec was...

Answer: linear predictive coding

Answer questions given context from a 
relevant Wikipedia article.



Retrieval-Augmented Distillation

(Gandhi et al 2024, Ge et al 2024, Divekar and Durrett 2024)

Retrieve

Pretrained model

Retrieve

Data

Generate

Data

Prompt2Model

Input: Prompt (task description + optional examples)

Answer questions given context from a 
relevant Wikipedia article.

Retrieve

Documents

Generate task-specific data 
conditioned on retrieved data

Input: Prompt (task description + optional examples)

Answer questions given context from a 
relevant Wikipedia article.

Finetune



Retrieval-Augmented Distillation

(Gandhi et al 2024, Ge et al 2024, Divekar and Durrett 2024)

Retrieve

Pretrained model

Retrieve

Data

Generate

Data

Prompt2Model

Input: Prompt (task description + optional examples)

Answer questions given context from a 
relevant Wikipedia article.

Retrieve

Documents

Generate task-specific data 
conditioned on retrieved data

Input: Prompt (task description + optional examples)

Answer questions given context from a 
relevant Wikipedia article.

Finetune

Retrieved data could be:

• Entire existing datasets from Hugging Face (Gandhi et al 2024)

• Individual rows from existing datasets (Ge et al 2024)

• Documents from the internet (Divekar and Durrett 2024)



Pretraining on Synthetic Data

(Eldan et al 2023, Gunasekar et al 2023, Li et al 2023, 

Abdin et al 2024)

• Your model for the minllama assignment was pretrained on 
GPT-4-generated “children’s story” data (Eldan et al 2023)

• Generating synthetic data results in lots of fluent text 

with near-guaranteed coverage of a fixed vocabulary

• The Phi models from Microsoft extends this to actual tasks



“AI models collapse when trained on recursively 
generated data” 
(Shumailov et al 2024)

• Setup:

• Train a language model from scratch on WikiText for one epoch

• At each subsequent epoch, have the model generate 

completely new data (with 10% of original data kept, and train 
on this data instead



Open Questions in Distillation

• How can you learn to be better than your teacher?

• How can AI and human “teachers” collaborate optimally?

• How can we avoid negative feedback loops (like model 

collapse)?



Questions?

56


