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Standard Prompting
• Combine a prompt template together with an input

Please answer this question: 

I think Vin Diesel has been a voice actor for several 
characters in TV series, do you know what their names are?



Problems
• Accuracy issues: 

• Knowledge cutoffs: parameters are usually only 
updated to a particular time 

• Private data: data stored in private text or data 
repositories not suitable for training 

• Learning failures: even for data that the model was 
trained on, it might not be sufficient to get the right 
answer 

• Verifiability issues: It is hard to tell if the answer is 
correct



Retrieval-augmented Generation 
(Chen et al. 2017)

• Retrieve relevant passages efficiently 
• Read the passages to answer the query

passage passage passage 
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retrieval reading



Example

https://www.behindthevoiceactors.com/Vin-Diesel/

https://www.behindthevoiceactors.com/tv-shows/Big-Mouth/Vin-Diesel/



Retrieval Methods

• Sparse retrieval
• Document-level dense retrieval
• Token-level dense retrieval
• Cross-encoder reranking
• Black-box retrieval (just ask Google/Bing)



Sparse Retrieval



Sparse Retrieval
• Express the query and document as a sparse word 

frequency vector (usually normalized by length) 

• Find the document with the highest inner-product or 
cosine similarity in the document collection

q=what is nlp d1 = what is life ? 
candy is life !
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Term Weighting 
(See Manning et al. 2009)

• Some terms are more important than others; low-
frequency words are often more important 

• Term frequency - in-document frequency (TF-IDF) 
 
 
 
 
 

• BM25: TF term similar to smoothed count-based LMS
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Inverted Index
• A data structure that allows for efficient sparse lookup of vectors
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Sparse Vectors
{ 
  “what”: [1], 
  “candy”: [1], 
  “nlp”: [2,3], 
  “is”: [1,2], 
  “language”: [2], 
  … 
}

Index

• Example software: Apache Lucene



Dense Retrieval



Dense Retrieval

• Encode document/query 
and find nearest neighbor 

• Can use: 
• Out-of-the-box 

embeddings 
• Learned embeddings

query



Creating Query/Document 
Embeddings

I hate this movie

model model model model

Method 1
Take one token

Method 2
Pool all tokens



Bidirectional vs. 
Unidirectional Attention

• Bidirectional Attention: Use a masked language 
model like BERT, RoBERTa, etc. as base

• LLM2Vec 
(BehnamGhader 
2024): Train 
unidirectional, then 
remove mask and 
use/train 

• Echo Embeddings 
(Springer et al 
2024): Repeat the 
string multiple times 
in a unidirectional 
model 



Learning Retrieval-oriented 
Embeddings

• Select positive and negative documents, train 
using a contrastive loss (e.g. hinge loss) 
 
 

• Basic idea: move the positive documents closer, 
negative documents farther away

L(θ, q) =
∑

dpos∈Dpos

∑

dneg∈Dneg

max(0, s(q, dneg; θ)− s(q, dpos; θ))



How to get negative examples? 
In-batch negatives

• Create a batch of queries and associated documents 
• Treat all other documents in the batch as negative examples
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• Problem: not enough hard examples



How to get negative examples? 
Hard negative mining

• Use a weaker retriever (e.g. BM25) to more examples 
and treat them as negatives
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Representative Models

• DPR (Karpukhin et al. 2020): learn encoders based 
on a BM25 hard negatives and in-batch negatives. 

• Contriever (Izacard et al. 2022): contrastive 
learning using two random spans as positive pairs



Embedding Interaction 
Methods



Approximate Nearest 
Neighbor Search

• Methods to retrieve embeddings in sub-linear time

• Software: FAISS, ChromaDB

101100
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001

Locality sensitive hashing: 
make partitions in continuous 
space, use like inverted index

Graph-based search: create 
“hubs” and search from there



Cross-encoder Reranking
• Jointly encode both queries and documents using 

neural model (Nogueira et al. 2019)

Figure from Khattab et al. (2020) 

• Precludes approximate nearest neighbor lookup, so 
can only be used on small number of candidates

Bi-encoder Cross-encoder



Token-level Dense Retrieval
• ColBERT (Khattab et al. 2020) use contextual 

representations of all query and document tokens 
to compute retrieval score.

• Significantly more effective (but more costly) than 
single-vector retrieval



LM-based Variants of 
Retrieval



Instructable Embeddings 
(Su et al. 2022)

• Instruction tuning for embedding models



Hypothetical Document Embeddings 
(Gao et al. 2022)

• Generate a “hypothetical document” for the query using 
an LLM, and try to look it up 

• Can be easier than trying to match under-specified query



Evaluating Retrieval



What is a Good Result?

• For humans: relevant information is included in the 
top of the ranking list 

• For machines: relevant information is included in a 
way that can be used by machines



Ranking Metrics
• Generally start with gold-standard relevance 

judgements and try to match them 
• e.g

2: Highly Relevant

1: Somewhat Relevant

0: Not Relevant



Cumulative Gain 
(Hegde 22)

• Sum of relevance score @ N values retrieved
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Discounted Cumulative Gain 
(Hegde 22)

• Add a discount 1/log2(i+1) for lower ranked values
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Normalized Discounted 
Cumulative Gain

• Makes sure that as you pick up more good docs you get a better score 
• nDCG = DCG/iDCG
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Other Metrics
• Mean Average Precision: The 

average precision at which each 
relevant document is retrieved
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• Recall@N: The percentage 
of time you get a positive 
document in the top N

R@1 = 0
R@2 = 1
R@3 = 1
R@4 = 1

R@5 = 1



Retriever-Reader Models



Simple: Just Chain 
Retrieval+Reading

• Use an out-of-the-box retriever and out-of-the-box reader

passage passage passage 
passage passage passage 

passage passage passage 
passage passage passage 

passage passage passage 
passage passage passage

answer

query

Google GPT

• Passages are concatenated to the context



Retriever + Generator End-to-end Training (“RAG”) 
(Lewis et al. 2020)

• Train the retriever and reader to improve accuracy 
• Reader: Maximize generation likelihood given 

single retrieved document 
• Retriever: Maximize overall likelihood by 

optimizing mixture weights over documents 



End-to-end Training Equations 
(Lewis et al. 2020)

• Generation is a mixture model: pick a document, 
generate from the document

PRAG(y|x) ≈
∏

i

∑

z∈top-k(p(·|x))

pη(z|x)pθ(yi|x, z, y1:i−1)

Retriever Generator

• Probability of the retriever is based on embeddings
pη(z|x) ∝ exp(d(z)⊤q(x)) d(z) = encd(z), q(x) = encq(x)

• Adjusts retriever to give higher similarities helpful docs 
• Issue: search index becomes stale → can only train q(x)



Training LMs w/ Retrieved Contexts

• Retrieve contexts and condition the pre-training of 
the model on these contexts 

• Many examples, e.g. 
• DrQA - retrieve from wikipedia and train reader 

(Chen et al. 2017) 
• RETRO - pre-train language model w/ retrieved 

context (Borgeaud et al. 2021)



Retrieval Granularity



When do we Retrieve?
• Once, at the beginning of generation

• Default method used by most systems (Lewis et al. 
2020) 

• Several times during generation, as necessary
• Generate a search token (Schick et al. 2023) 
• Search when the model is uncertain (Jiang et al. 2023) 

• Every token  
• Find similar final embeddings (Khandelwal et al. 2019) 
• Approximate attention with nearest neighbors (Bertsch 

et al. 2023)



Triggering Retrieval w/ Tokens
• Toolformer 

(Schick et al. 
2023) generates 
tokens that 
trigger retrieval 
(or other tools) 

• Training is done 
in an iterative 
manner - 
generate and 
identify 
successful 
retrievals



Triggering Retrieval w/ Uncertainty
• FLARE (Jiang et al. 2023) tries to generate 

content, then does retrieval if LM certainty is low



Retrieval+Critique
• SELF-RAG (Asai et al. 2023) critiques the 

retrieved/generated outputs for accuracy



Ensuring Use of Relevant Context
• Better retrievers make more relevant context 
• Decide whether to include passages (Asai et al. 2021) 
• Filter down to parts of retrieved passages (Wang et al. 2023)



Token-level Softmax Modification 
• kNN-LM (Khandelwal et al. 2019) retrieves similar 

examples, and uses the following token from them



Token-level Approximate Attention 
• Unlimiformer (Bertsch et al. 2023) notes that attention is 

an inner-product and does top-k attention 
• First, process input with a sliding window 
• Then perform attention using a vector index

45



Questions?


