
CS11-711 Advanced NLP

Retrieval and Retrieval-
Augmented Generation

Graham Neubig

https://phontron.com/class/anlp-fall2024/

https://phontron.com/class/anlp-fall2024/

Standard Prompting
• Combine a prompt template together with an input

Please answer this question:

I think Vin Diesel has been a voice actor for several
characters in TV series, do you know what their names are?

Problems
• Accuracy issues:

• Knowledge cutoffs: parameters are usually only
updated to a particular time

• Private data: data stored in private text or data
repositories not suitable for training

• Learning failures: even for data that the model was
trained on, it might not be sufficient to get the right
answer

• Verifiability issues: It is hard to tell if the answer is
correct

Retrieval-augmented Generation
(Chen et al. 2017)

• Retrieve relevant passages efficiently
• Read the passages to answer the query

passage passage passage
passage passage passage

passage passage passage
passage passage passage

passage passage passage
passage passage passage

answer

query

retrieval reading

Example

https://www.behindthevoiceactors.com/Vin-Diesel/

https://www.behindthevoiceactors.com/tv-shows/Big-Mouth/Vin-Diesel/

Retrieval Methods

• Sparse retrieval
• Document-level dense retrieval
• Token-level dense retrieval
• Cross-encoder reranking
• Black-box retrieval (just ask Google/Bing)

Sparse Retrieval

Sparse Retrieval
• Express the query and document as a sparse word

frequency vector (usually normalized by length)

• Find the document with the highest inner-product or
cosine similarity in the document collection

q=what is nlp d1 = what is life ?
candy is life !

0.33
0

0.33
0.33

0
…

0.25
0.125

0
0.25

0
…

0
0

0.125
0.125

0
…

0
0

0.125
0
0
…

d2 = nlp is an acronym for
natural language processing

d3 = I like to do
good research on nlp

what
candy

nlp
is

language
…

q*d1 = 0.165 q*d2 = 0.0825 q*d3 = 0.0413

Term Weighting
(See Manning et al. 2009)

• Some terms are more important than others; low-
frequency words are often more important

• Term frequency - in-document frequency (TF-IDF)

• BM25: TF term similar to smoothed count-based LMS

TF(t, d) =
freq(t, d)

∑
t′
freq(t′, d)

IDF(t) = log

(

|D|
∑

d′∈D
δ(freq(t, d′) > 0)

)

TF-IDF(t, d) = TF(t, d)× IDF(t)

BM-25(t, d) = IDF(t) ·
freq(t, d) · (k1 + 1)

freq(t, d) + k1 ·
(

1− b+ b ·
|d|

avgdl

)

Inverted Index
• A data structure that allows for efficient sparse lookup of vectors

d1

2
1
0
2
0
…

0
0
1
1
1
…

0
0
1
0
0
…

d2 d3

what
candy

nlp
is

language

Sparse Vectors
{
 “what”: [1],
 “candy”: [1],
 “nlp”: [2,3],
 “is”: [1,2],
 “language”: [2],
 …
}

Index

• Example software: Apache Lucene

Dense Retrieval

Dense Retrieval

• Encode document/query
and find nearest neighbor

• Can use:
• Out-of-the-box

embeddings
• Learned embeddings

query

Creating Query/Document
Embeddings

I hate this movie

model model model model

Method 1
Take one token

Method 2
Pool all tokens

Bidirectional vs.
Unidirectional Attention

• Bidirectional Attention: Use a masked language
model like BERT, RoBERTa, etc. as base

• LLM2Vec
(BehnamGhader
2024): Train
unidirectional, then
remove mask and
use/train

• Echo Embeddings
(Springer et al
2024): Repeat the
string multiple times
in a unidirectional
model

Learning Retrieval-oriented
Embeddings

• Select positive and negative documents, train
using a contrastive loss (e.g. hinge loss)

• Basic idea: move the positive documents closer,
negative documents farther away

L(θ, q) =
∑

dpos∈Dpos

∑

dneg∈Dneg

max(0, s(q, dneg; θ)− s(q, dpos; θ))

How to get negative examples?
In-batch negatives

• Create a batch of queries and associated documents
• Treat all other documents in the batch as negative examples

q1
q2
q3
q4
q5

1
1

1
1

1

0

0

Label

• Problem: not enough hard examples

How to get negative examples?
Hard negative mining

• Use a weaker retriever (e.g. BM25) to more examples
and treat them as negatives

q1
q2
q3
q4
q5

1
1

1
1

1

0

0

Label

• Problem: hard “negatives” might actually be positive

0

}
}

In-batch
negatives

Hard
negatives

BM25

Representative Models

• DPR (Karpukhin et al. 2020): learn encoders based
on a BM25 hard negatives and in-batch negatives.

• Contriever (Izacard et al. 2022): contrastive
learning using two random spans as positive pairs

Embedding Interaction
Methods

Approximate Nearest
Neighbor Search

• Methods to retrieve embeddings in sub-linear time

• Software: FAISS, ChromaDB

101100

110

010

011

001

Locality sensitive hashing:
make partitions in continuous
space, use like inverted index

Graph-based search: create
“hubs” and search from there

Cross-encoder Reranking
• Jointly encode both queries and documents using

neural model (Nogueira et al. 2019)

Figure from Khattab et al. (2020)

• Precludes approximate nearest neighbor lookup, so
can only be used on small number of candidates

Bi-encoder Cross-encoder

Token-level Dense Retrieval
• ColBERT (Khattab et al. 2020) use contextual

representations of all query and document tokens
to compute retrieval score.

• Significantly more effective (but more costly) than
single-vector retrieval

LM-based Variants of
Retrieval

Instructable Embeddings
(Su et al. 2022)

• Instruction tuning for embedding models

Hypothetical Document Embeddings
(Gao et al. 2022)

• Generate a “hypothetical document” for the query using
an LLM, and try to look it up

• Can be easier than trying to match under-specified query

Evaluating Retrieval

What is a Good Result?

• For humans: relevant information is included in the
top of the ranking list

• For machines: relevant information is included in a
way that can be used by machines

Ranking Metrics
• Generally start with gold-standard relevance

judgements and try to match them
• e.g

2: Highly Relevant

1: Somewhat Relevant

0: Not Relevant

Cumulative Gain
(Hegde 22)

• Sum of relevance score @ N values retrieved

2

1

0

2

0

sum(0,2,1,2,0)

5
=

CG@5 for ranking

2

1

0

2

0

sum(0,2,1,2,0)

5
=

CG@5 for ideal ranking

Discounted Cumulative Gain
(Hegde 22)

• Add a discount 1/log2(i+1) for lower ranked values

2

1

0

2

0

2.62

2

1

0

2

0

DCG@5 for ranking iDCG@5 for ideal ranking

* 1

* 0.63

* 0.5

* 0.43

* 0.38

* 1

* 0.63

* 0.5

* 0.43

* 0.38

3.76

Normalized Discounted
Cumulative Gain

• Makes sure that as you pick up more good docs you get a better score
• nDCG = DCG/iDCG

2

1

0

2

0

2

1

0

2

0

* 1

* 0.63

* 0.5

* 0.43

* 0.38

* 1

* 0.63

* 0.5

* 0.43

* 0.38

DCG@2
1.26

iDCG@2
3.26

0.386
nDCG@2

DCG@3
1.76

iDCG@2
3.76

0.468
nDCG@2

Other Metrics
• Mean Average Precision: The

average precision at which each
relevant document is retrieved

yes

yes

no

yes

no

0/1

1/2

2/3

3/4

3/5

0.638

• Recall@N: The percentage
of time you get a positive
document in the top N

R@1 = 0
R@2 = 1
R@3 = 1
R@4 = 1

R@5 = 1

Retriever-Reader Models

Simple: Just Chain
Retrieval+Reading

• Use an out-of-the-box retriever and out-of-the-box reader

passage passage passage
passage passage passage

passage passage passage
passage passage passage

passage passage passage
passage passage passage

answer

query

Google GPT

• Passages are concatenated to the context

Retriever + Generator End-to-end Training (“RAG”)
(Lewis et al. 2020)

• Train the retriever and reader to improve accuracy
• Reader: Maximize generation likelihood given

single retrieved document
• Retriever: Maximize overall likelihood by

optimizing mixture weights over documents

End-to-end Training Equations
(Lewis et al. 2020)

• Generation is a mixture model: pick a document,
generate from the document

PRAG(y|x) ≈
∏

i

∑

z∈top-k(p(·|x))

pη(z|x)pθ(yi|x, z, y1:i−1)

Retriever Generator

• Probability of the retriever is based on embeddings
pη(z|x) ∝ exp(d(z)⊤q(x)) d(z) = encd(z), q(x) = encq(x)

• Adjusts retriever to give higher similarities helpful docs
• Issue: search index becomes stale → can only train q(x)

Training LMs w/ Retrieved Contexts

• Retrieve contexts and condition the pre-training of
the model on these contexts

• Many examples, e.g.
• DrQA - retrieve from wikipedia and train reader

(Chen et al. 2017)
• RETRO - pre-train language model w/ retrieved

context (Borgeaud et al. 2021)

Retrieval Granularity

When do we Retrieve?
• Once, at the beginning of generation

• Default method used by most systems (Lewis et al.
2020)

• Several times during generation, as necessary
• Generate a search token (Schick et al. 2023)
• Search when the model is uncertain (Jiang et al. 2023)

• Every token
• Find similar final embeddings (Khandelwal et al. 2019)
• Approximate attention with nearest neighbors (Bertsch

et al. 2023)

Triggering Retrieval w/ Tokens
• Toolformer

(Schick et al.
2023) generates
tokens that
trigger retrieval
(or other tools)

• Training is done
in an iterative
manner -
generate and
identify
successful
retrievals

Triggering Retrieval w/ Uncertainty
• FLARE (Jiang et al. 2023) tries to generate

content, then does retrieval if LM certainty is low

Retrieval+Critique
• SELF-RAG (Asai et al. 2023) critiques the

retrieved/generated outputs for accuracy

Ensuring Use of Relevant Context
• Better retrievers make more relevant context
• Decide whether to include passages (Asai et al. 2021)
• Filter down to parts of retrieved passages (Wang et al. 2023)

Token-level Softmax Modification
• kNN-LM (Khandelwal et al. 2019) retrieves similar

examples, and uses the following token from them

Token-level Approximate Attention
• Unlimiformer (Bertsch et al. 2023) notes that attention is

an inner-product and does top-k attention
• First, process input with a sliding window
• Then perform attention using a vector index

45

Questions?

