CS11-711 Advanced NLP Attention and Transformers

Graham Neubig

Carnegie Mellon University

Language Technologies Institute

https://phontron.com/class/anlp-fall2024/

Attention

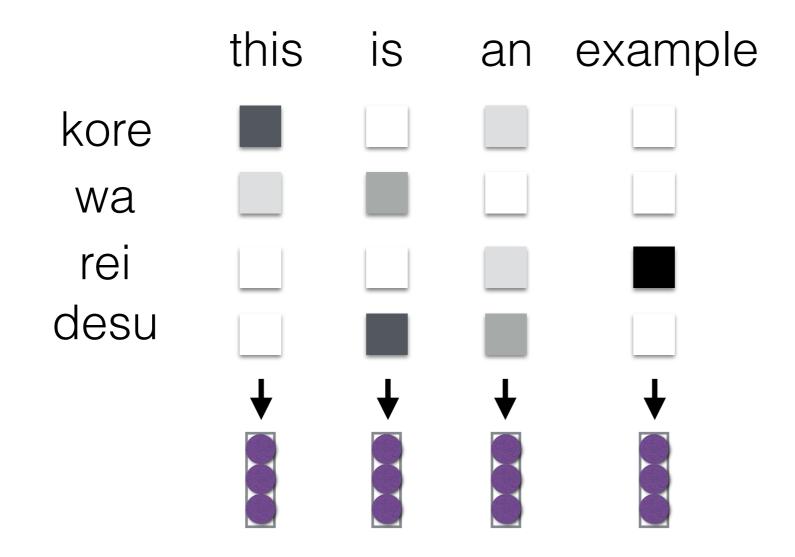
Basic Idea

(Bahdanau et al. 2015)

- Encode each token in the sequence into a vector
- When decoding, perform a linear combination of these vectors, weighted by "attention weights"

Cross Attention (Bahdanau et al. 2015)

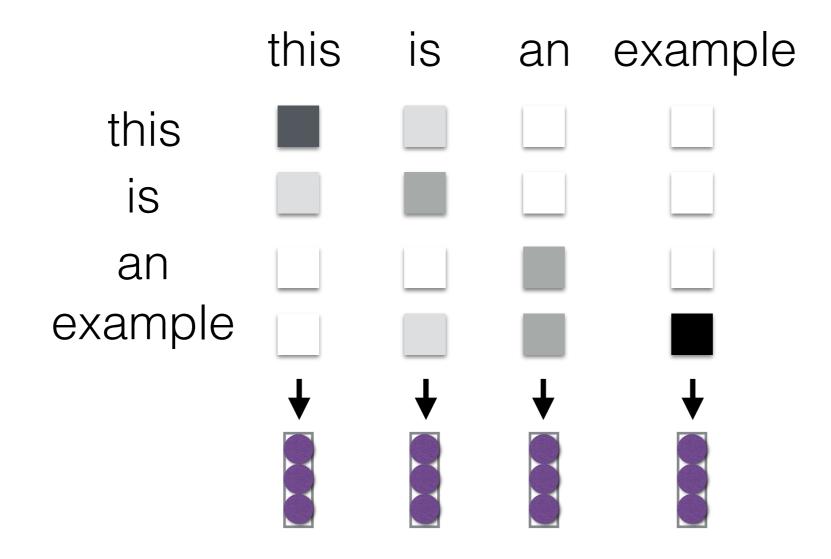
• Each element in a sequence attends to elements of another sequence



Self Attention

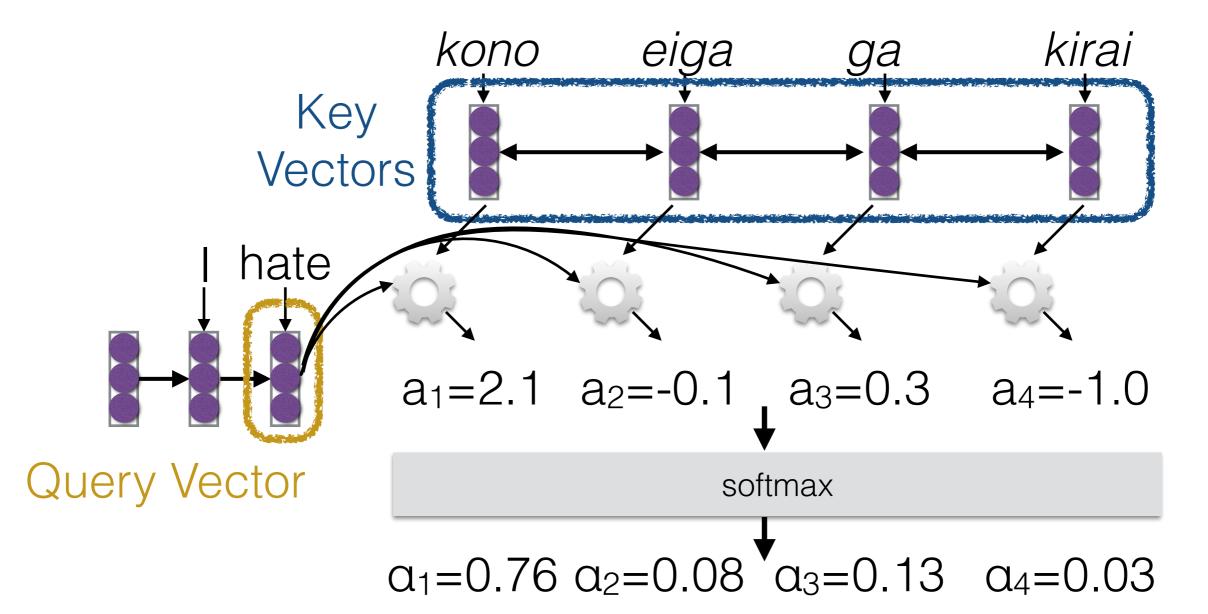
(Cheng et al. 2016, Vaswani et al. 2017)

 Each element in the sequence attends to elements of that sequence → context sensitive encodings!



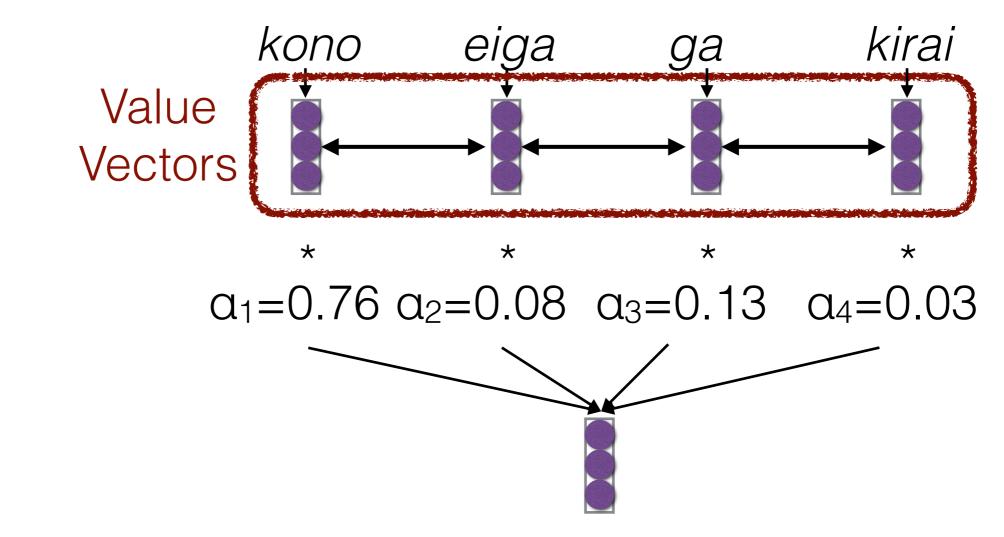
Calculating Attention (1)

- Use "query" vector (decoder state) and "key" vectors (all encoder states)
- For each query-key pair, calculate weight
- Normalize to add to one using softmax



Calculating Attention (2)

 Combine together value vectors (usually encoder states, like key vectors) by taking the weighted sum



• Use this in any part of the model you like

A Graphical Example

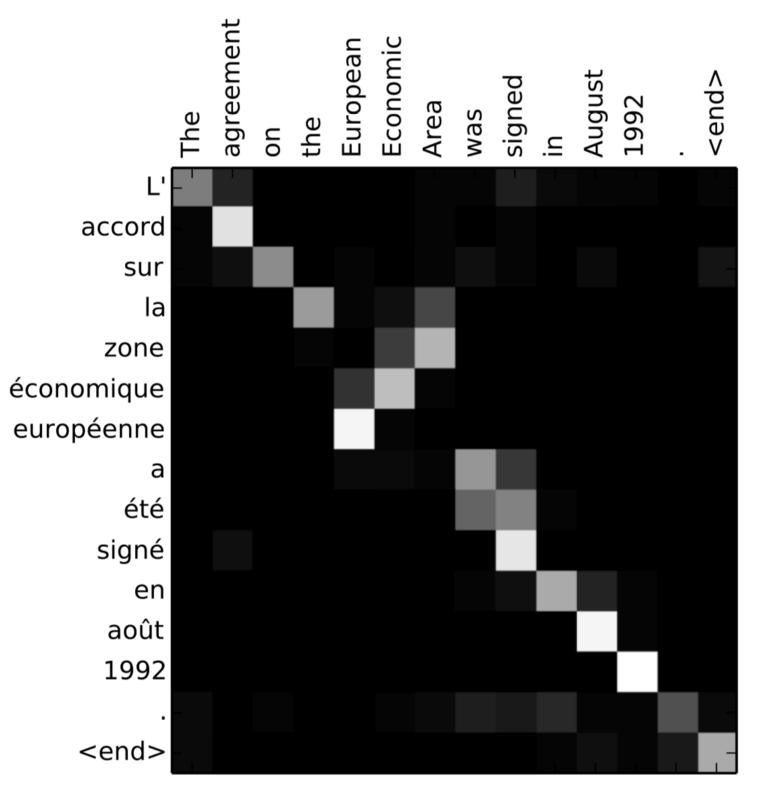


Image from Bahdanau et al. (2015)

Attention Score Functions (1)

- **q** is the query and **k** is the key
- Multi-layer Perceptron (Bahdanau et al. 2015)

$$a(\boldsymbol{q}, \boldsymbol{k}) = \boldsymbol{w}_2^{\mathsf{T}} \operatorname{tanh}(W_1[\boldsymbol{q}; \boldsymbol{k}])$$

- Flexible, often very good with large data
- Bilinear (Luong et al. 2015)

$$a(\boldsymbol{q},\boldsymbol{k}) = \boldsymbol{q}^{\mathsf{T}} W \boldsymbol{k}$$

Attention Score Functions (2)

• Dot Product (Luong et al. 2015)

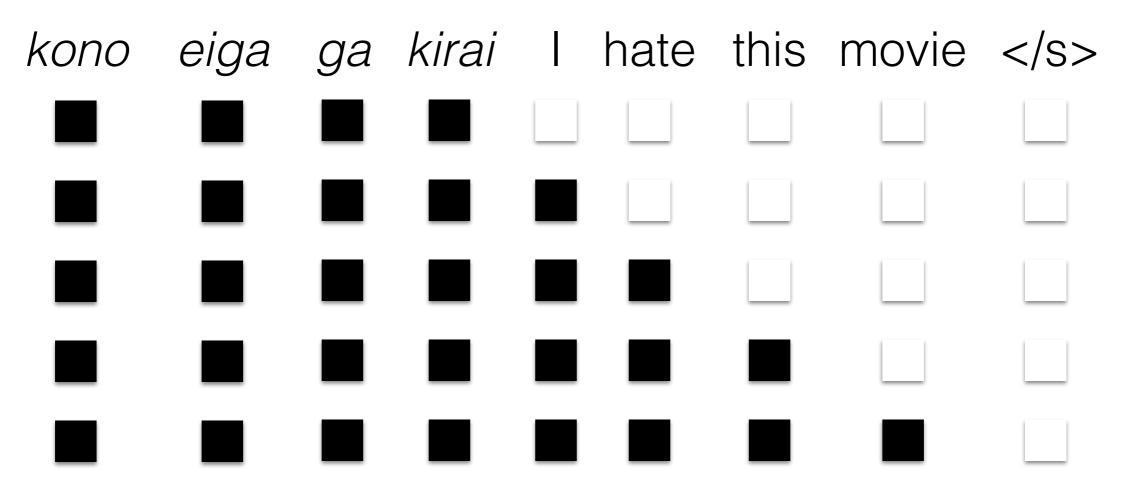
$$a(\boldsymbol{q},\boldsymbol{k}) = \boldsymbol{q}^{\intercal}\boldsymbol{k}$$

- No parameters! But requires sizes to be the same.
- Scaled Dot Product (Vaswani et al. 2017)
 - *Problem:* scale of dot product increases as dimensions get larger
 - Fix: scale by size of the vector

$$a(\boldsymbol{q},\boldsymbol{k}) = rac{\boldsymbol{q}^{\intercal}\boldsymbol{k}}{\sqrt{|\boldsymbol{k}|}}$$

Masking for Training

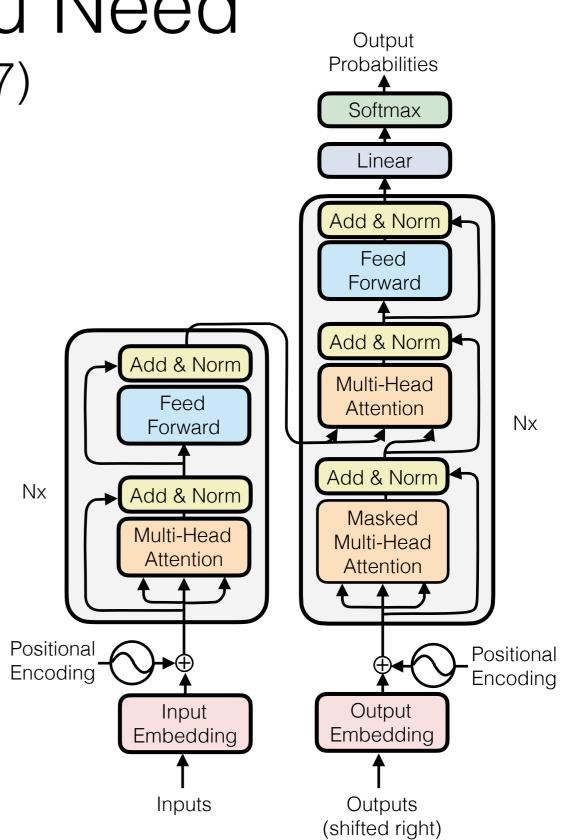
- We want to perform training in as few operations as possible using big matrix multiplies
- We can do so by "masking" the results for the output



Transformers

"Attention is All You Need" (Vaswani et al. 2017)

- A sequence-to-sequence model based entirely on attention
- Strong results on machine translation
- Fast: only matrix multiplications

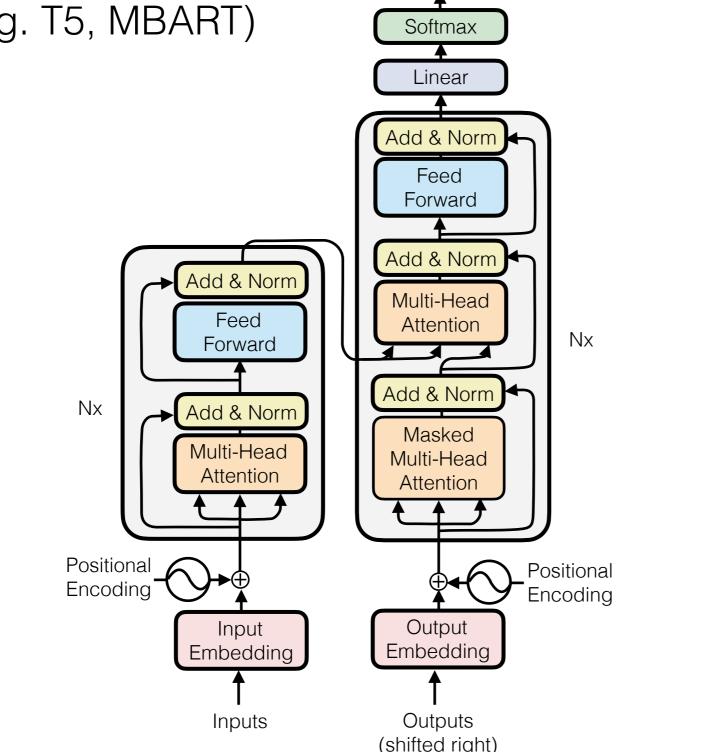


Two Types of Transformers

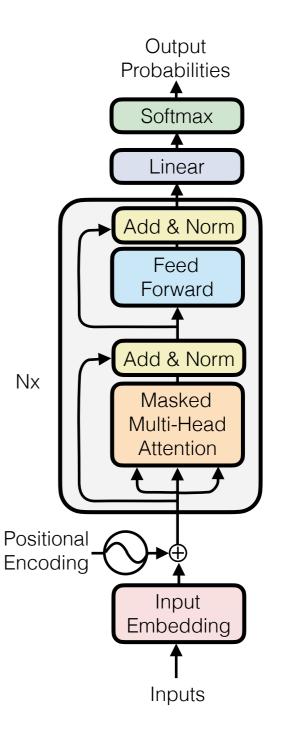
Output

Probabilities

Encoder-Decoder Model (e.g. T5, MBART)



Decoder Only Model (e.g. GPT, LLaMa)



Core Transformer Concepts

- Positional encodings
- Multi-headed attention
- Masked attention
- Residual + layer normalization
- Feed-forward layer

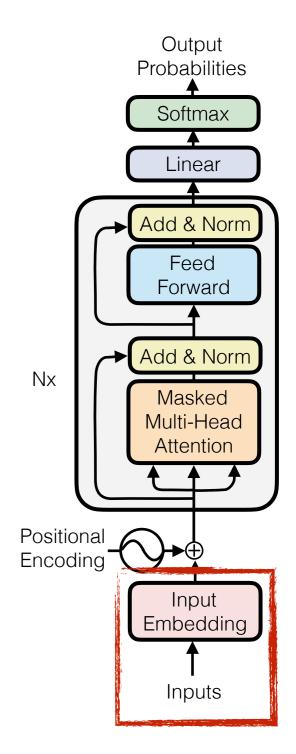
(Review) Inputs and Embeddings

 Inputs: Generally split using subwords

the books were improved

the book _s were improv _ed

 Input Embedding: Looked up, like in previously discussed models



Multi-head Attention

Intuition for Multi-heads

 Intuition: Information from different parts of the sentence can be useful to disambiguate in different ways

I **run** a small business

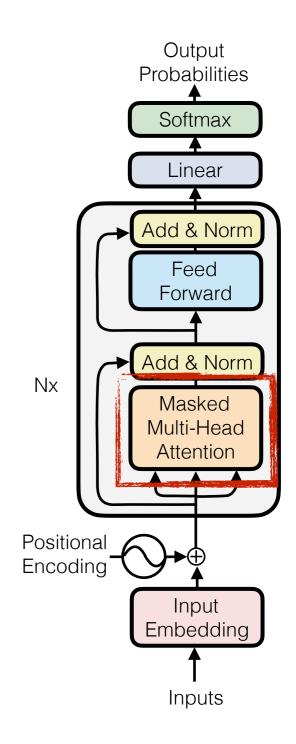
I **run** a mile in 10 minutes

The robber made a **run** for it

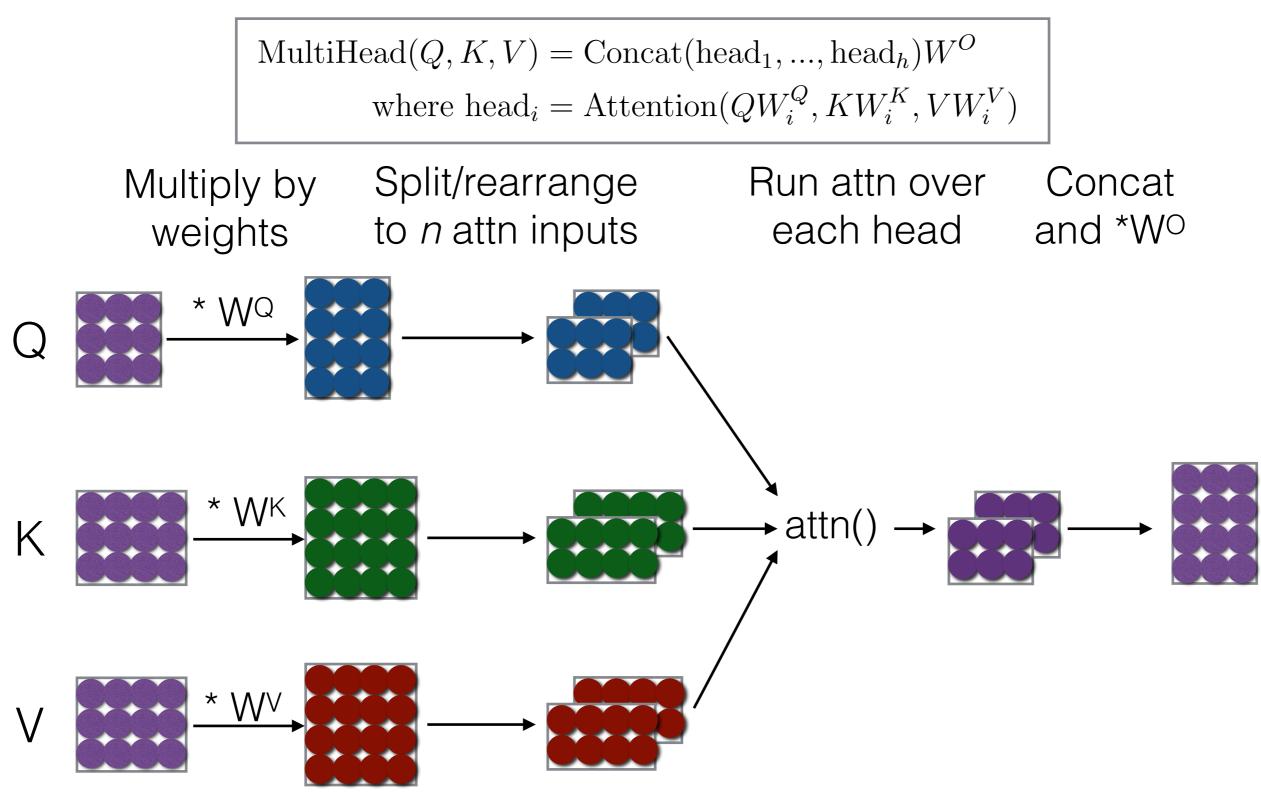
(nearby context)

syntax

semantics (farther context)



Multi-head Attention Concept



Code Example

```
def forward(self, query, key, value, mask=None):
    nbatches = query.size(0)
```

```
# 1) Do all the linear projections
query = self.W_q(query)
key = self.W_k(key)
value = self.W_v(value)
```

```
# 2) Reshape to get h heads
query = query.view(nbatches, -1, self.heads, self.d_k).transpose(1, 2)
key = key.view(nbatches, -1, self.heads, self.d_k).transpose(1, 2)
value = value.view(nbatches, -1, self.heads, self.d_k).transpose(1, 2)
```

```
# 3) Apply attention on all the projected vectors in batch.
x, self.attn = attention(query, key, value)
```

```
# 4) "Concat" using a view and apply a final linear.
x = (
    x.transpose(1, 2)
    .contiguous()
    .view(nbatches, -1, self.h * self.d_k)
)
return self.W o(x)
```

What Happens w/ Multi-heads?

• Example from Vaswani et al.

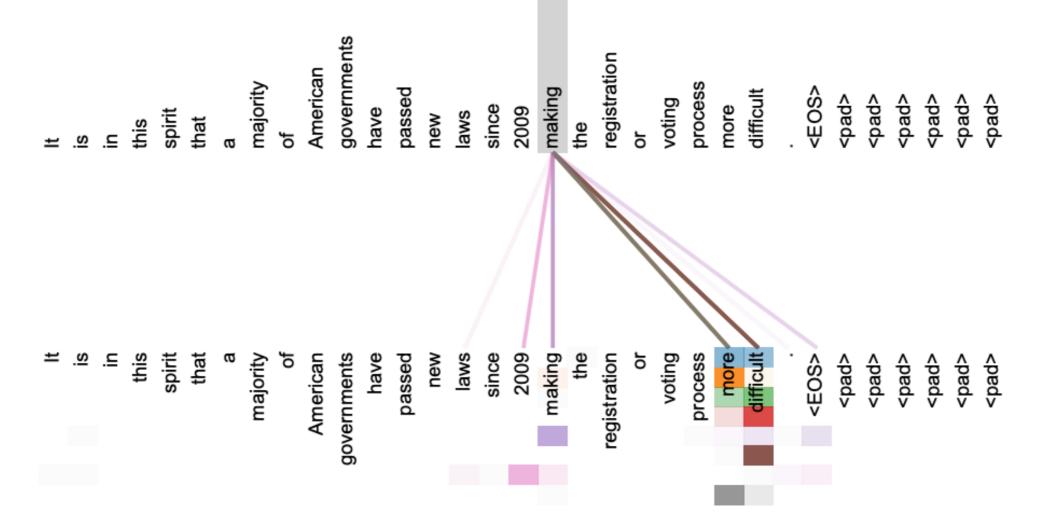


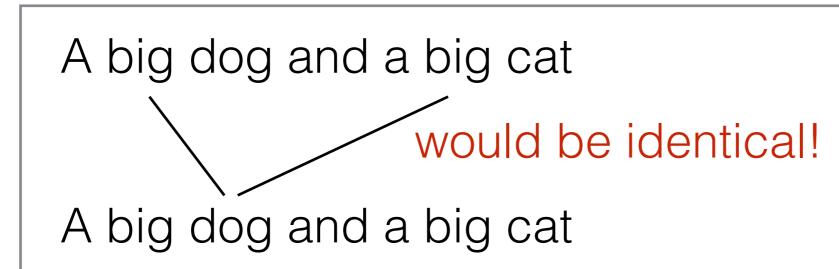
Figure 3: An example of the attention mechanism following long-distance dependencies in the encoder self-attention in layer 5 of 6. Many of the attention heads attend to a distant dependency of the verb 'making', completing the phrase 'making...more difficult'. Attentions here shown only for the word 'making'. Different colors represent different heads. Best viewed in color.

See also BertVis: <u>https://github.com/jessevig/bertviz</u>

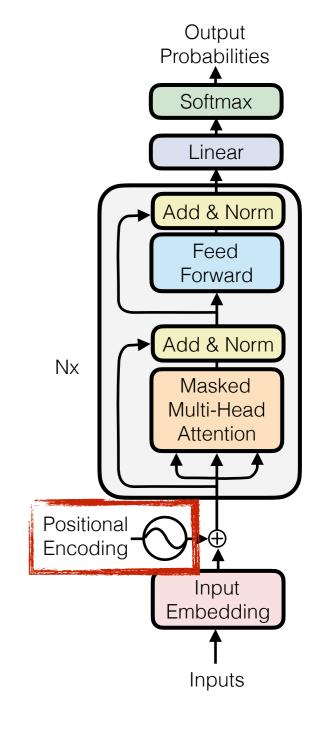
Positional Encoding

Positional Encoding

- The transformer model is *purely* attentional
- If embeddings were used, there would be no way to distinguish between *identical words*

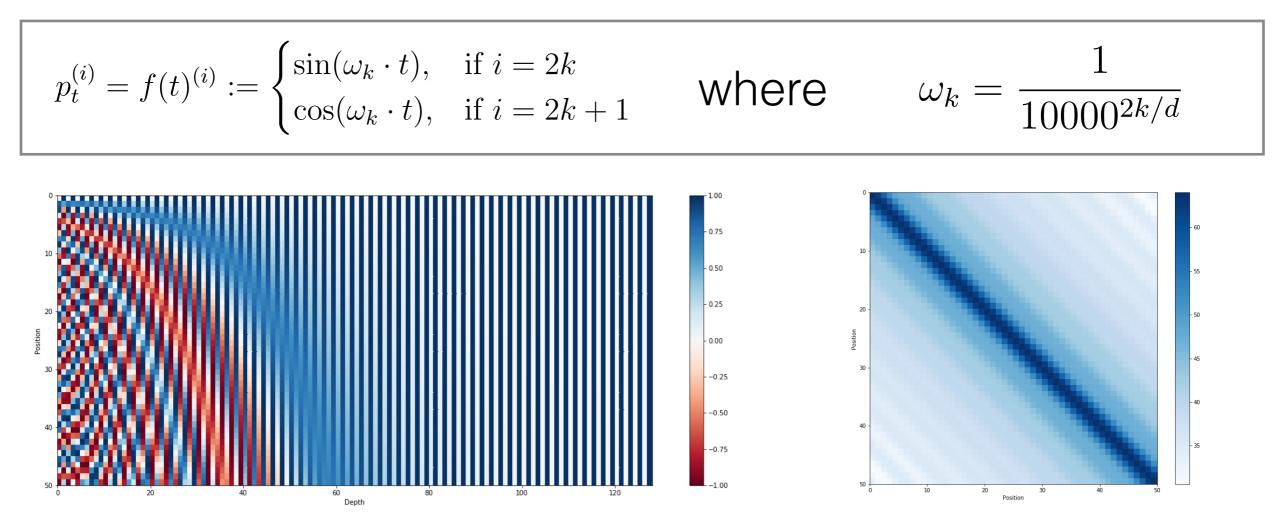


 Positional encodings add an embedding based on the word position



Sinusoidal Encoding (Vaswani+ 2017, Kazemnejad 2019)

Calculate each dimension with a sinusoidal function



 Why? So the dot product between two embeddings becomes higher relatively.

Learned Encoding (Shaw+ 2018)

- More simply, just create a learnable embedding
- Advantages: flexibility
- Disadvantages: impossible to extrapolate to longer sequences

Absolute vs. Relative Encodings (Shaw+ 2018)

- Absolute positional encodings add an encoding to the input in *hope* that relative position will be captured
- Relative positional encodings *explicitly* encode relative position

Rotary Positional Encodings (RoPE) (Su+ 2021)

• Fundamental idea: we want the dot product of embeddings to result in a function of relative position

$$f_q(\mathbf{x}_m, m) \cdot f_k(\mathbf{x}_n, n) = g(\mathbf{x}_m, \mathbf{x}_n, m - n)$$

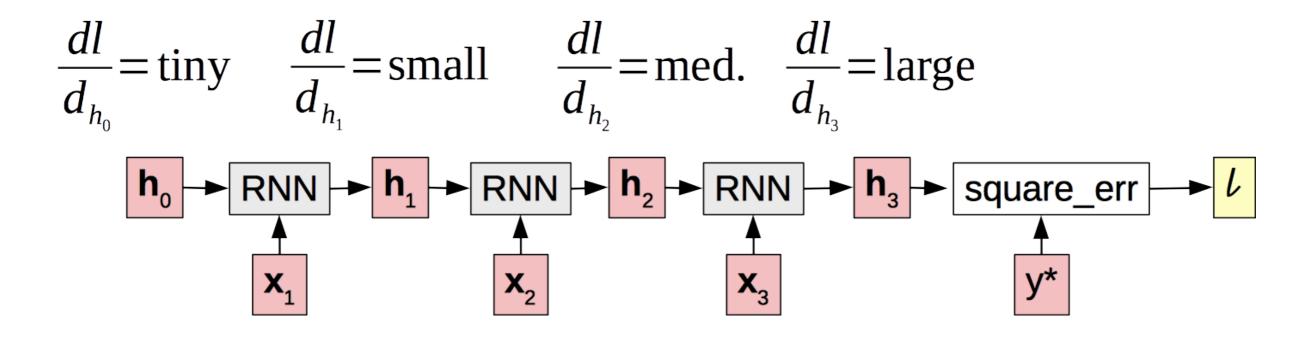
 In summary, RoPE uses trigonometry and imaginary numbers to come up with a function that satisfies this property

$$R_{\Theta,m}^{d}\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ \vdots \\ x_{d-1} \\ x_d \end{pmatrix} \otimes \begin{pmatrix} \cos m\theta_1 \\ \cos m\theta_1 \\ \cos m\theta_2 \\ \cos m\theta_2 \\ \vdots \\ \cos m\theta_d \\ \cos m\theta_d \\ \frac{1}{2} \end{pmatrix} + \begin{pmatrix} -x_2 \\ x_1 \\ -x_4 \\ x_3 \\ \vdots \\ -x_d \\ x_{d-1} \end{pmatrix} \otimes \begin{pmatrix} \sin m\theta_1 \\ \sin m\theta_1 \\ \sin m\theta_2 \\ \sin m\theta_2 \\ \vdots \\ \sin m\theta_2 \\ \vdots \\ \sin m\theta_d \\ \frac{1}{2} \end{pmatrix}$$

Layer Normalization and Residual Connections

Reminder: Gradients and Training Instability

 In RNNs, we asked about how backdrop through a network causes gradients can vanish or explode



• The same issue occurs in multi-layer transformers!

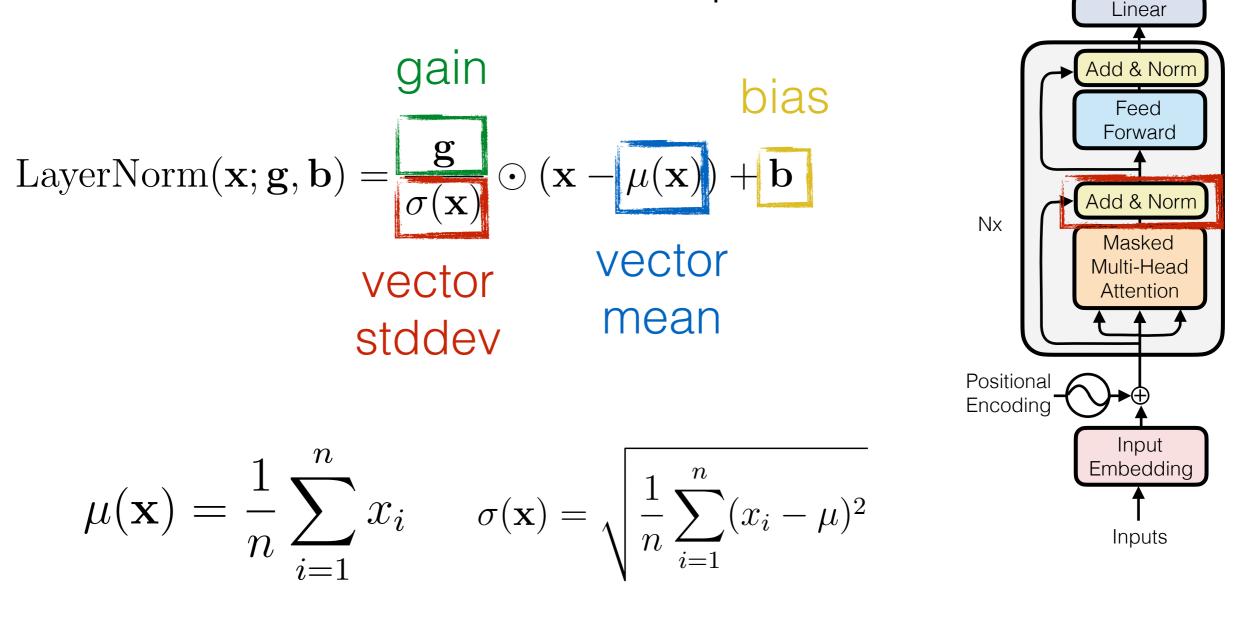
Layer Normalization (Ba et al. 2016)

Output

Probabilities

Softmax

 Normalizes the outputs to be within a consistent range, preventing too much variance in scale of outputs



RMSNorm (Zhang and Sennrich 2019)

• Simplifies LayerNorm by removing the mean and bias terms

$$RMS(\mathbf{x}) = \sqrt{\frac{1}{n} \sum_{i=1}^{n} x_i^2}$$

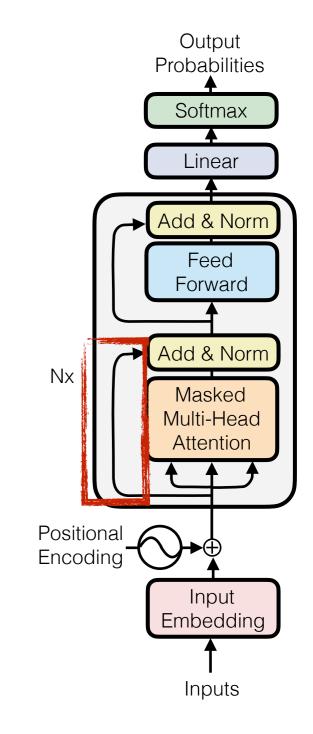
$$RMSNorm(\mathbf{x}) = \frac{\mathbf{x}}{RMS(\mathbf{x})} \cdot \mathbf{g}$$

Residual Connections

 Add an additive connection between the input and output

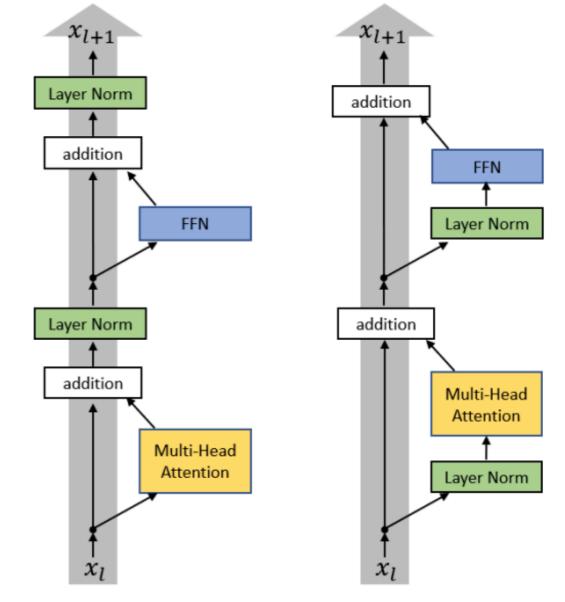
 $\text{Residual}(\mathbf{x}, f) = f(\mathbf{x}) + \mathbf{x}$

- Prevents vanishing gradients and allows f to learn the *difference* from the input
- Quiz: what are the implications for self-attention w/ and w/o residual connections?



Post- vs. Pre- Layer Norm (e.g. Xiong et al. 2020)

- Where should LayerNorm be applied? Before or after?
- Pre-layer-norm is better for gradient propagation



post-LayerNorm pre-LayerNorm

Feed Forward Layers

Feed Forward Layers

Output Probabilities

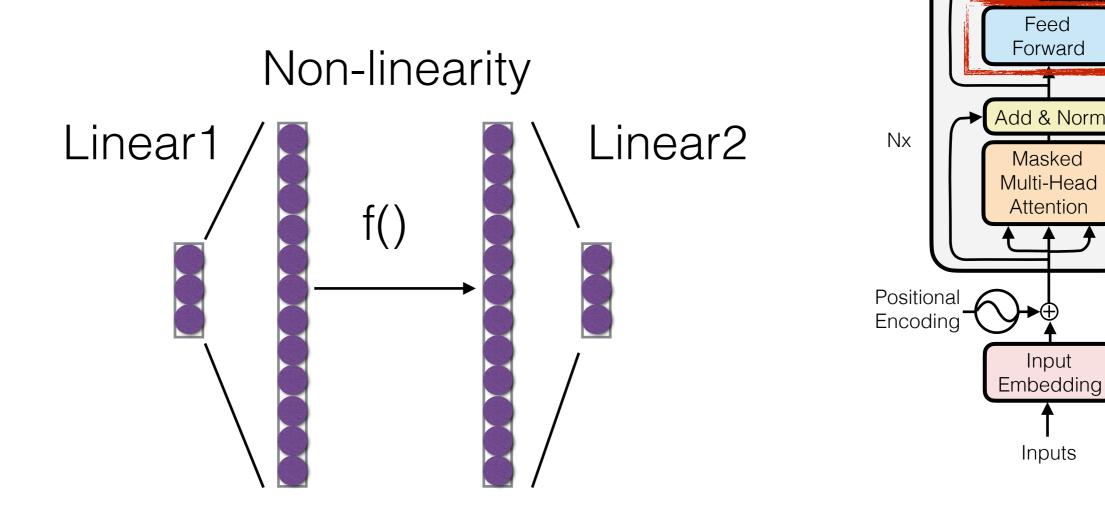
Softmax

Linear

Add & Norn

 Extract combination features from the attended outputs

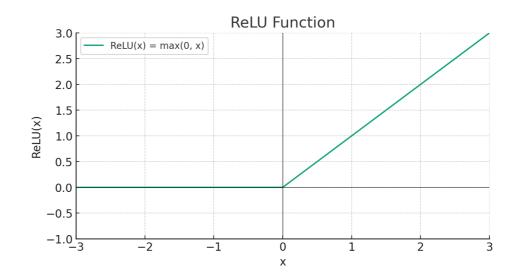
 $FFN(x; W_1, \mathbf{b}_1, W_2, \mathbf{b}_2) = f(\mathbf{x}W_1 + \mathbf{b}_1)W_2 + \mathbf{b}_2$



Some Activation Functions in Transformers

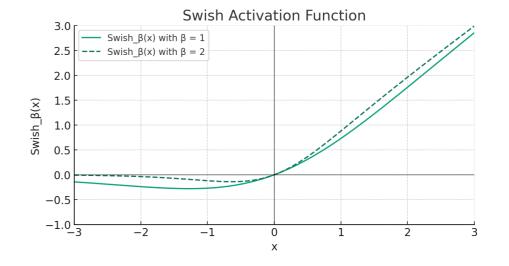
• Vaswani et al.: ReLU

 $\operatorname{ReLU}(\mathbf{x}) = \max(0, \mathbf{x})$



• LLaMa: Swish/SiLU (Hendricks and Gimpel 2016)

$$Swish(\mathbf{x};\beta) = \mathbf{x} \odot \sigma(\beta \mathbf{x})$$



Optimization Tricks for Transformers

Transformers are Powerful but Fickle

- Optimization of models can be difficult, and transformers are more difficult than others!
- e.g. OPT-175 training logbook <u>https://github.com/facebookresearch/metaseq/</u> <u>blob/main/projects/OPT/chronicles/</u> <u>OPT175B_Logbook.pdf</u>

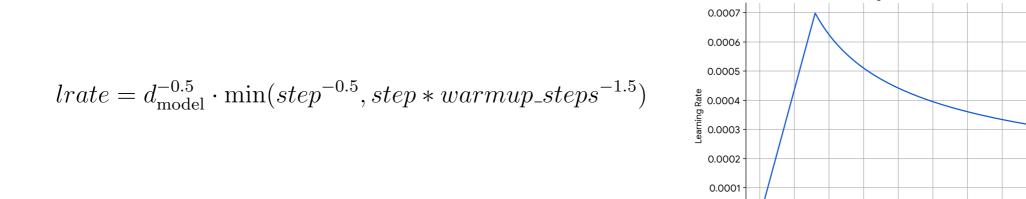
Optimizers for Transformers

- SGD: Update in the direction of reducing loss
- Adam: Add momentum turn and normalize by stddev of the outputs
- Adam w/ learning rate schedule (Vaswani et al. 2017): Adds a learning rate increase and decrease

0.0000

Learning Rate Schedule

2500 5000 7500 10000 12500 15000 17500 20000



 AdamW (Loshchilov and Hutter 2017): properly applies weight decay for regularization to Adam

Low-Precision Training

- Training at full 32-bit precision can be costly
- Low-precision alternatives

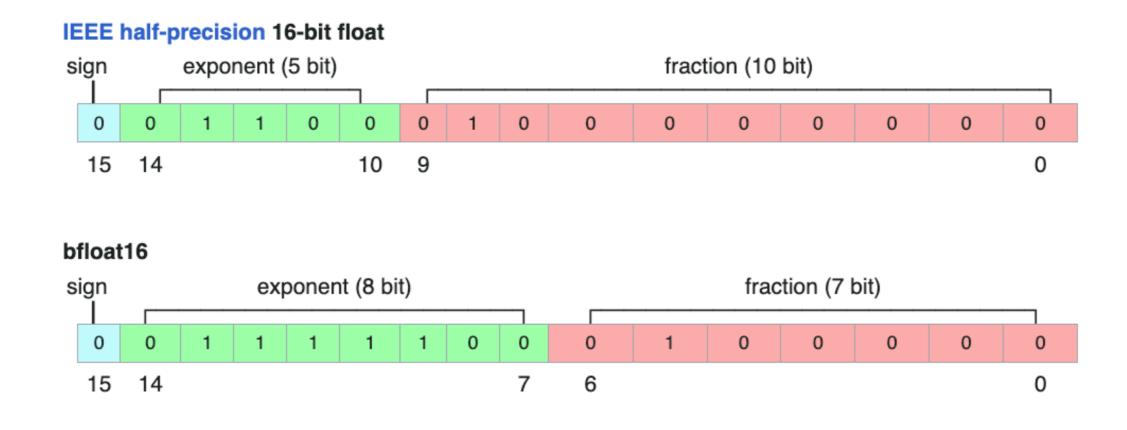
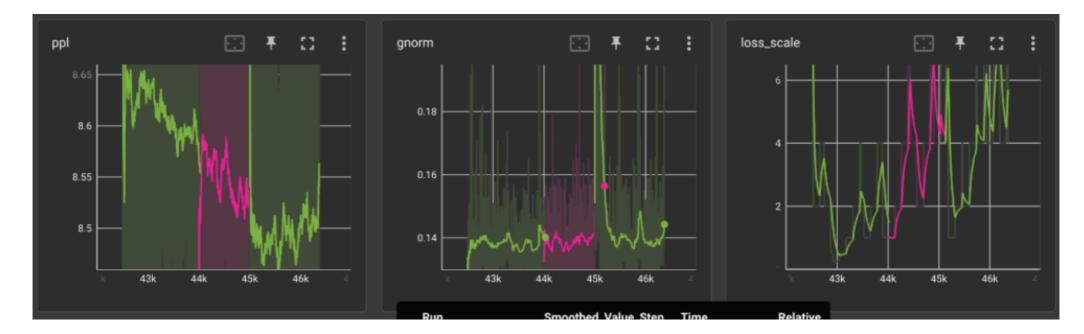


Image: Wikipedia

Checkpointing/Restarts

- Even through best efforts, training can go south what to do?
- Monitor possible issues, e.g. through monitoring the norm of gradients



- If training crashes, roll back to previous checkpoint, shuffle data, and resume
- (Also, check your code)

Image: OPT Log

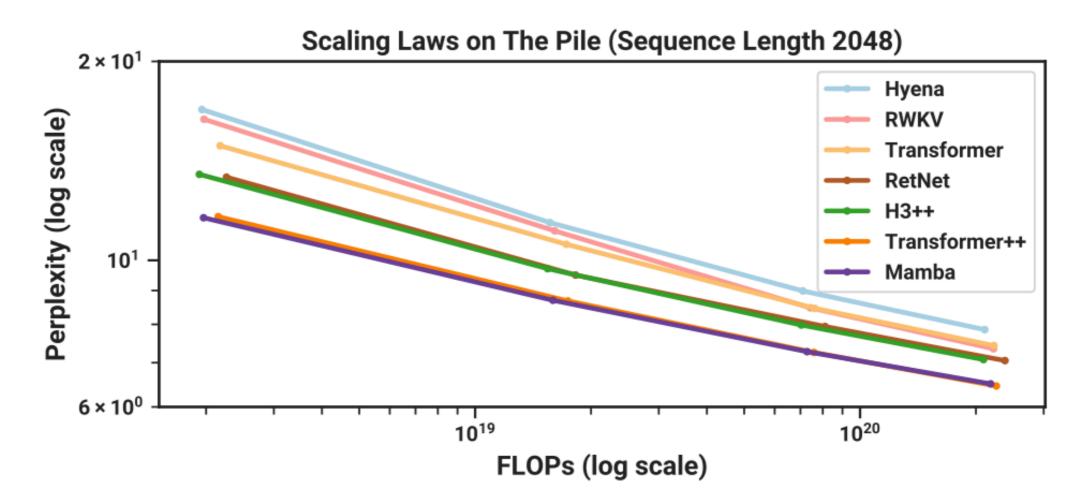
Comparing Transformer Architectures

Original Transformer vs. LLaMa

	Vaswani et al.	LLaMA
Norm Position	Post	Pre
Norm Type	LayerNorm	RMSNorm
Non-linearity	ReLU	SiLU
Positional Encoding	Sinusoidal	RoPE

How Important is It?

• "Transformer" is Vaswani et al., "Transformer++" is (basically) LLaMA

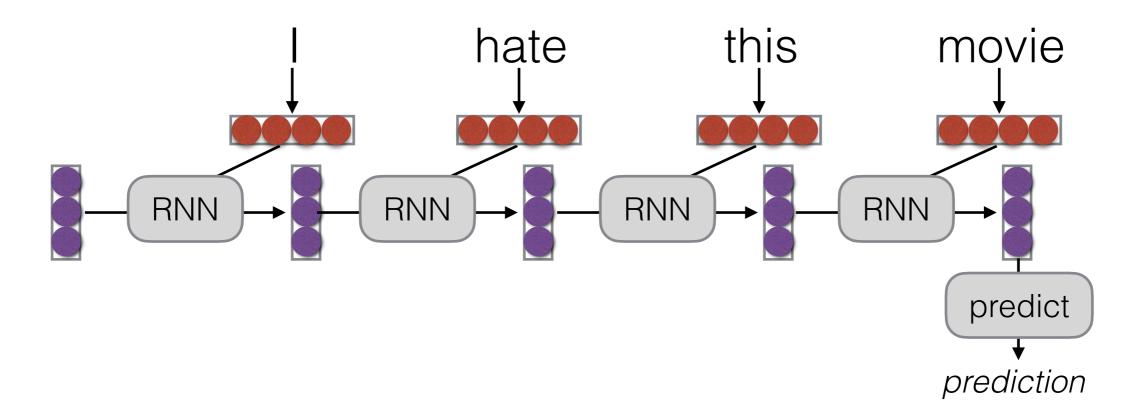


• Stronger architecture is $\approx 10x$ more efficient!

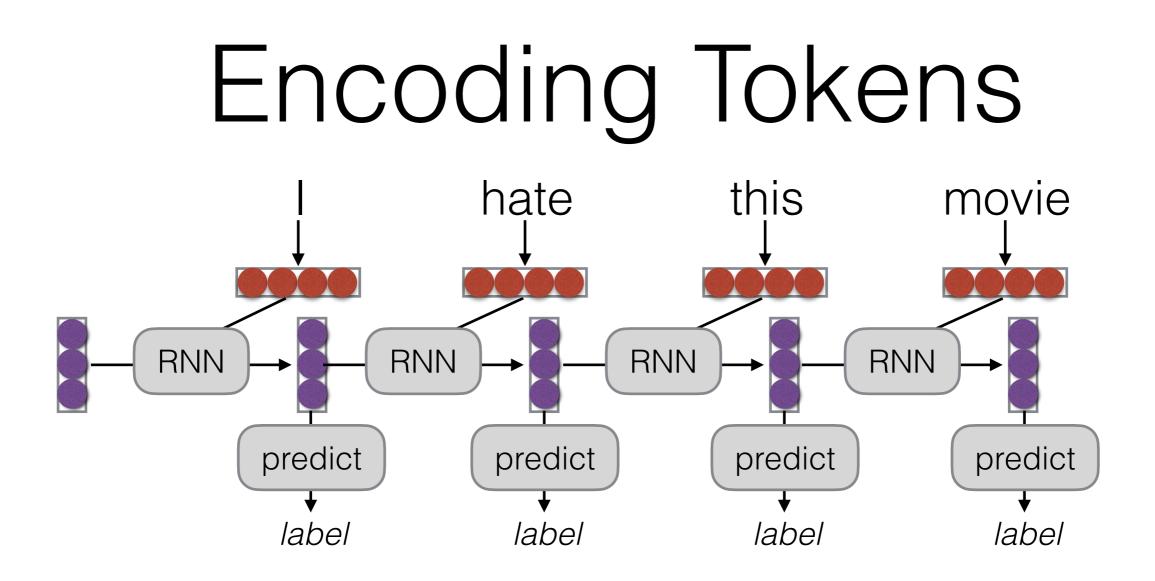
Image: Gu and Dao (2023)

Applications of Sequence Models

Encoding Sequences

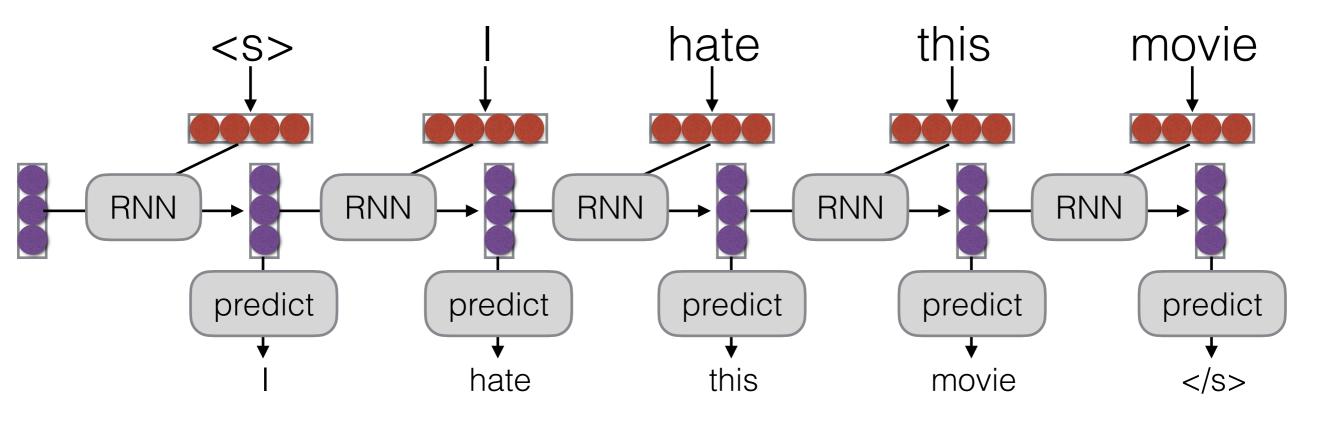


- Binary or multi-class prediction
- Sentence representation for retrieval, sentence comparison, etc.



- Sequence labeling
- Language Modeling

e.g. Language Modeling



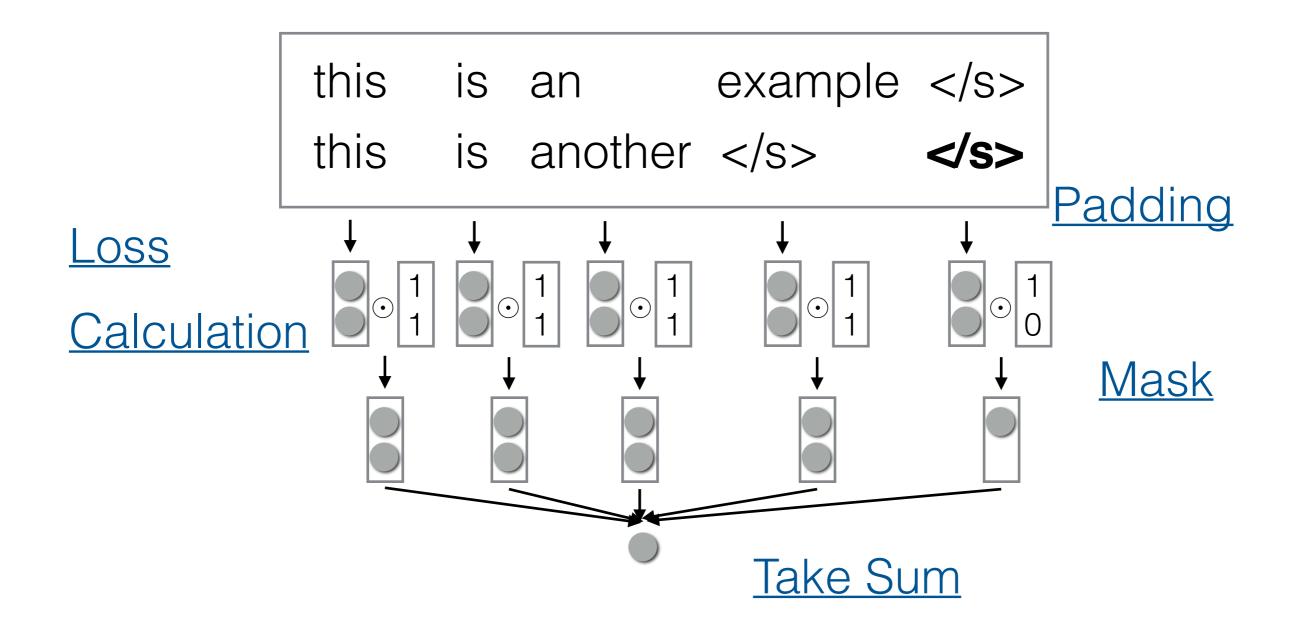
- Language modeling is like a tagging task, where each tag is the next word!
- Note: this is an autoregressive model

Efficiency Tricks for Sequence Modeling

Handling Mini-batching

- Mini-batching makes things much faster!
- But mini-batching in sequence modeling is harder than in feed-forward networks
 - Each word depends on the previous word
 - Sequences are of various length

Mini-batching Method

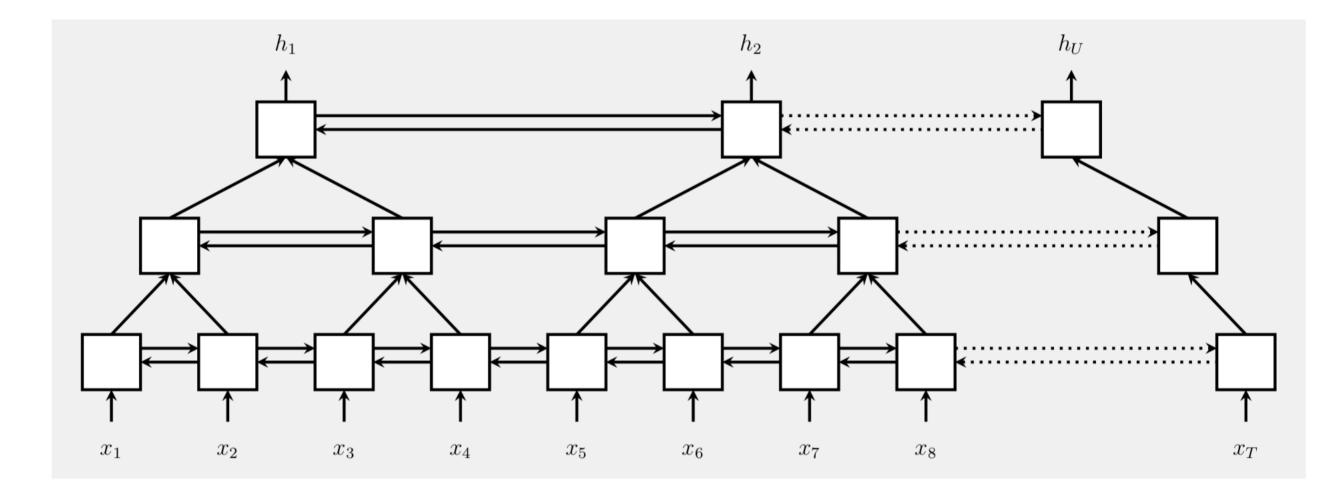


Bucketing/Sorting

- If we use sentences of different lengths, too much padding and sorting can result in decreased performance
- To remedy this: **sort sentences** so similarlylengthed sentences are in the same batch

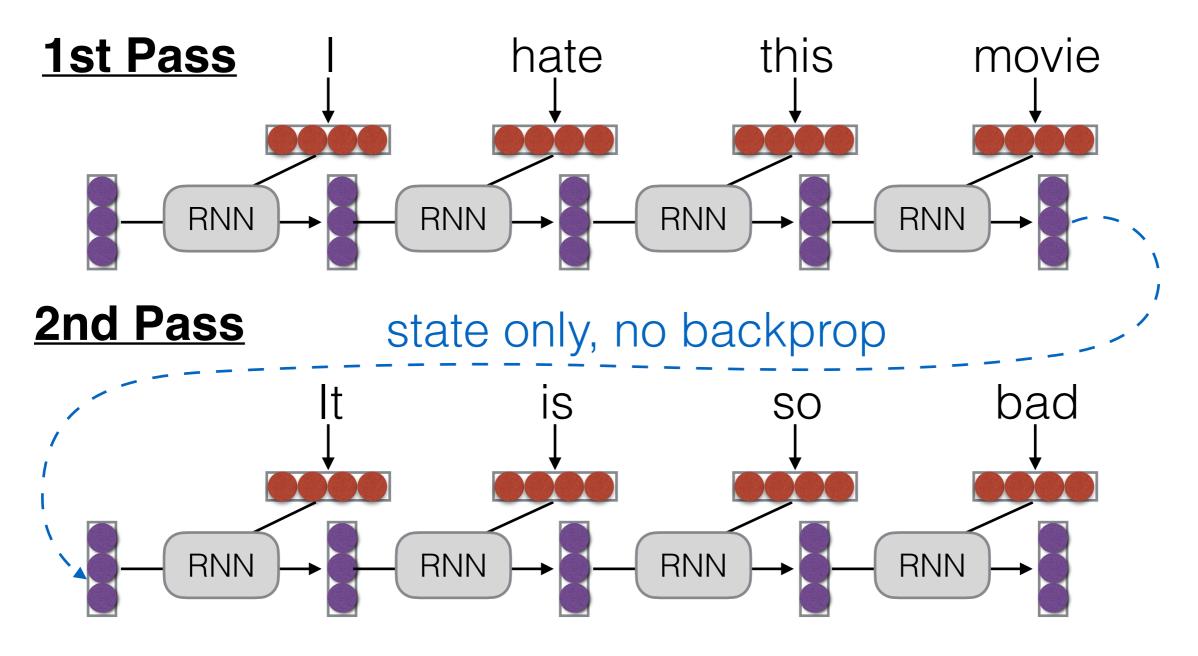
Strided Architectures (e.g. Chan et al. 2015)

• Downscale between layers



Truncated BPTT

 Backprop over shorter segments, initialize w/ the state from the previous segment



Questions?