

## NLP Programming Tutorial 11 -The Structured Perceptron

#### Graham Neubig Nara Institute of Science and Technology (NAIST)



# **Prediction Problems**

| Given x,                  | predict y              |          |
|---------------------------|------------------------|----------|
| <u>A book review</u>      | <u>Is it positive?</u> | Binary   |
| Oh, man I love this book! | yes                    | Predicti |
| This book is so boring    | no                     | (2 choic |

<u>A tweet</u> On the way to the park! 公園に行くなう! <u>Its language</u> English Japanese Prediction 2 choices)

Multi-class Prediction (several choices)



Structured Prediction (millions of choices)

book





read

a

Structured Prediction (millions of choices)



### So Far, We Have Learned

#### **Classifiers**

Perceptron, SVM, Neural Net

Lots of features

Binary prediction

**Generative Models** 

HMM POS Tagging CFG Parsing

**Conditional probabilities** 

Structured prediction



## Structured Perceptron

#### **Classifiers**

Perceptron, SVM, Neural Net

Lots of features

**Binary prediction** 

**Generative Models** 

HMM POS Tagging CFG Parsing

**Conditional probabilities** 

Structured prediction

Structured perceptron → Classification with lots of features over structured models!

# Uses of Structured Perceptron (or Variants)

#### POS Tagging with HMMs

Collins "Discriminative Training Methods for Hidden Markov Models: Theory and Experiments with Perceptron Algorithms" ACL02

#### Parsing

Huang+ "Forest Reranking: Discriminative Parsing with Non-Local Features" ACL08

#### Machine Translation

Liang+ "An End-to-End Discriminative Approach to Machine Translation" ACL06 (Neubig+ "Inducing a Discriminative Parser for Machine Translation Reordering, EMNLP12", Plug :) )

#### Discriminative Language Models

Roark+ "Discriminative Language Modeling with Conditional Random Fields and the Perceptron Algorithm" ACL04 6



## Example: Part of Speech (POS) Tagging

Given a sentence X, predict its part of speech sequence Y



• A type of structured prediction

#### MAIST

# Hidden Markov Models (HMMs) for **POS** Tagging

- POS → POS transition probabilities  $P(Y) \approx \prod_{i=1}^{l+1} P_T(y_i | y_{i-1})$ 
  - Like a bigram model!
- POS → Word emission probabilities

 $P(X|Y) \approx \prod_{i=1}^{\prime} P_{E}(x_{i}|y_{i})$ 





## Why are Features Good?

- Can easily try many different ideas
  - Are capital letters usually nouns?
  - Are words that end with -ed usually verbs? -ing?



Normal HMM: P

$$P(X,Y) = \prod_{1}^{\prime} P_{E}(x_{i}|y_{i}) \prod_{i=1}^{\prime+1} P_{T}(y_{i}|y_{i-1})$$



Normal HMM: 
$$P(X,Y) = \prod_{i=1}^{l} P_{E}(x_{i}|y_{i}) \prod_{i=1}^{l+1} P_{T}(y_{i}|y_{i-1})$$

Log Likelihood:  $\log P(X,Y) = \sum_{i=1}^{l} \log P_E(x_i|y_i) \sum_{i=1}^{l+1} \log P_T(y_i|y_{i-1})$ 



Normal HMM: 
$$P(X,Y) = \prod_{i=1}^{\prime} P_{E}(x_{i}|y_{i}) \prod_{i=1}^{\prime+1} P_{T}(y_{i}|y_{i-1})$$

Log Likelihood:  $\log P(X,Y) = \sum_{1}^{\prime} \log P_{E}(x_{i}|y_{i}) \sum_{i=1}^{\prime+1} \log P_{T}(y_{i}|y_{i-1})$ 

Score 
$$S(X,Y) = \sum_{1}^{\prime} W_{E,y_{i},x_{i}} \sum_{i=1}^{\prime+1} W_{T,y_{i-1},y_{i}}$$



Normal HMM: 
$$P(X,Y) = \prod_{i=1}^{\prime} P_{E}(x_{i}|y_{i}) \prod_{i=1}^{\prime+1} P_{T}(y_{i}|y_{i-1})$$

Log Likelihood:  $\log P(X,Y) = \sum_{1}^{\prime} \log P_{E}(x_{i}|y_{i}) \sum_{i=1}^{\prime+1} \log P_{T}(y_{i}|y_{i-1})$ 

Score 
$$S(X,Y) = \sum_{1}^{l} W_{E,y_{i},x_{i}} \sum_{i=1}^{l+1} W_{E,y_{i-1},y_{i}}$$

When:  $W_{E, y_i, x_i} = \log P_E(x_i | y_i)$   $W_{T, y_{i-1}, y_i} = \log P_T(y_i | y_{i-1})$  $\log P(X, Y) = S(X, Y)$ 

### Example

$$\varphi( ( \downarrow visited Nara \land e equal (X,Y_1) = 1 \varphi_{T,VBD,NNP} (X,Y_1) = 1 \varphi_{T,NNP,}(X,Y_1) = 1$$

$$\varphi_{E,PRP,TT}(X,Y_1) = 1 \varphi_{E,VBD,'visited}(X,Y_1) = 1 \varphi_{E,NNP,''Nara}(X,Y_1) = 1$$

$$\varphi_{CAPS,PRP}(X,Y_1) = 1 \varphi_{CAPS,NNP}(X,Y_1) = 1 \varphi_{SUF,VBD,''...ed''}(X,Y_1) = 1$$

$$\varphi( ( \downarrow visited Nara \land e equal (X,Y_1) = 1 \varphi_{SUF,VBD,''...ed''}(X,Y_1) = 1$$

$$\varphi_{T,~~,NNP}(X,Y_1) = 1 \varphi_{T,NNP,VBD}(X,Y_1) = 1 \varphi_{T,VBD,NNP}(X,Y_1) = 1~~$$

$$\varphi_{T,~~,NNP}(X,Y_1) = 1 \varphi_{T,NNP,VBD}(X,Y_1) = 1 \varphi_{T,VBD,NNP}(X,Y_1) = 1~~$$

$$\varphi_{E,NNP,TT}(X,Y_1) = 1 \varphi_{E,VBD,'visited''}(X,Y_1) = 1 \varphi_{E,NNP,''Nara'}(X,Y_1) = 1$$

$$\varphi_{CAPS,NNP}(X,Y_1) = 1 \varphi_{E,VBD,'visited''}(X,Y_1) = 1 \varphi_{SUF,VBD,''...ed''}(X,Y_1) = 1$$

$$\varphi_{CAPS,NNP}(X,Y_1) = 1$$

$$\varphi_{SUF,VBD,''...ed''}(X,Y_1) = 1$$



# Finding the Best Solution

• We must find the POS sequence that satisfies:

$$\hat{\mathbf{Y}} = \operatorname{argmax}_{\mathbf{Y}} \sum_{i} w_{i} \phi_{i}(\mathbf{X}, \mathbf{Y})$$



## Remember: HMM Viterbi Algorithm

- Forward step, calculate the best path to a node
  - Find the path to each node with the lowest negative log probability
- Backward step, reproduce the path
  - This is easy, almost the same as word segmentation



## Forward Step: Part 1

 First, calculate transition from <S> and emission of the first word for every POS



## Forward Step: Middle Parts

MAIST

• For middle words, calculate the minimum score for all possible previous POS tags





## HMM Viterbi with Features

• Same as probabilities, use feature weights





## HMM Viterbi with Features

Can add additional features





# Learning In the Structured Perceptron

- Remember the perceptron algorithm
- If there is a mistake:

```
w \leftarrow w + y \phi(x)
```

- Update weights to: increase score of positive examples decrease score of negative examples
- What is positive/negative in structured perceptron?

# Learning in the Structured Perceptron

• Positive example, correct feature vector:

• Negative example, incorrect feature vector:

# **Choosing an Incorrect Feature Vector**

• There are too many incorrect feature vectors!

$$\varphi( \underbrace{\downarrow}_{A} \underbrace{\forall}_{A} \underbrace{\downarrow}_{A} \underbrace{\downarrow}_{$$

• Which do we use?

# **Choosing an Incorrect Feature Vector**

• Answer: We update using the incorrect answer with the highest score:

$$\hat{\mathbf{Y}} = \operatorname{argmax}_{\mathbf{Y}} \sum_{i} w_{i} \phi_{i}(\mathbf{X}, \mathbf{Y})$$

• Our update rule becomes:

$$w \leftarrow w + \phi(X, Y') - \phi(X, \hat{Y})$$

- (Y' is the correct answer)
- Note: If highest scoring answer is correct, no change

## Structured Perceptron Algorithm

create map w
for / iterations
for each labeled pair X, Y\_prime in the data
Y\_hat = HMM\_VITERBI(W, X)
phi\_prime = CREATE\_FEATURES(X, Y\_prime)
phi\_hat = CREATE\_FEATURES(X, Y\_hat)
w += phi\_prime - phi\_hat



# Creating HMM Features

• Make "create features" for each transition, emission

```
CREATE_TRANS(NNP,VBD) CREATE_EMIT(NNP,Nara)

\phi["T,NNP,VBD"] = 1 \phi["E,NNP,Nara"] = 1

\phi["CAPS,NNP"] = 1
```



# Creating HMM Features

• The create\_features function does for all words

```
CREATE_FEATURES(X, Y):
   create map phi
  for i in 0 .. |Y|:
     if i == 0: first_tag = "<s>"
      else: first tag = Y[i-1]
     if i == |Y|: next_tag = "</s>"
     else: next_tag = Y[i]
     phi += create_trans(first_tag, next_tag)
  for i in 0 .. |Y|-1:
     phi += create_emit(Y[i], X[i])
   return phi
```

# Viterbi Algorithm Forward Step

```
split line into words
I = length(words)
make maps best_score, best_edge
best score["0 < s >"] = 0 # Start with < s >
best edge["0 <s>"] = NULL
for i in 0 ... I-1:
   for each prev in keys of possible_tags
      for each next in keys of possible_tags
          if best score["i prev"] and transition["prev next"] exist
             score = best score["i prev"] +
                          -log P<sub>r</sub>(next|prev) + -log P<sub>r</sub>(word[i]|next)
                  W*(CREATE_T(prev,next)+CREATE_E(next,word[i]))
             if best_score["i+1 next"] is new or < score
                best_score["i+1 next"] = score
                best_edge["i+1 next"] = "i prev"
                                                                   28
# Finally, do the same for </s>
```



#### Exercise

## Exercise

- Write train-hmm-percep and test-hmm-percep
- Test the program
  - Input: test/05-{train,test}-input.txt
  - Answer: test/05-{train,test}-answer.txt
- Train an HMM model on data/wiki-en-train.norm\_pos and run the program on data/wiki-en-test.norm
- Measure the accuracy of your tagging with script/gradepos.pl data/wiki-en-test.pos my\_answer.pos
- Report the accuracy (compare to standard HMM)
- Challenge:

create new features use training with margin or regularization



### Thank You!