
Agents for Software
Development

Graham Neubig

My Profile
●Professor at CMU

●Chief Scientist at All Hands AI (building
open-source coding agents)

●Maintainer of OpenHands

https://github.com/All-Hands-AI/OpenHands
●Software developer

https://github.com/All-Hands-AI/OpenHands

More and more major businesses and
industries are being run on software and
delivered as online services—from movies to
agriculture to national defense. […] Over the
next 10 years, I expect many more industries
to be disrupted by software […].

— Marc Andreessen - Why Software is Eating the World (2011)

If we gave everyone the ability to quickly write
software to achieve their goals, what could they do?

What is Involved in
Developing Software?

Today was a Good Day: The Daily Life of Software Developers
Meyer et al. 2019

17%

36%
10%

8%

14%

15%
Coding
Bugfixing
Testing
Documents/Reviews
Communication
Other

How Can We Support
Developers?

Development Copilots
• Work synchronously with the developer to ease

writing code
• e.g. Github Copilot/Cursor

Development Agents
• For coding (e.g. SWE-Agent, Aider)
• For broader development (e.g. Devin, OpenHands)

Autonomous Issue Resolution

https://github.com/All-Hands-AI/OpenHands-resolver

https://github.com/All-Hands-AI/OpenHands-resolver

How Promising?
• Code generation leads to large improvements in

productivity (Github 2023)

Challenges in Coding
Agents

• Defining the Environment
• Designing an Observations/Actions
• Code Generation (atomic actions)
• File Localization (exploration)
• Planning and Error Recovery
• Safety

Software Development
Environments

Types of Environments
• Actual Environments:

• Source Repositories: Github, Gitlab
• Task Management Software: Jira, Linear
• Office Software: Google Docs, Microsoft Office
• Communication Tools: Gmail, Slack

• Testing Environments:
• Mostly focused on coding!
• Developers do more, e.g. browse the web (next session)

Simple Coding
(Chen et al. 2021, Austin et al. 2021)

• e.g. HumanEval/
MBPP

• Examples of usage
of the Python
standard library

• Includes docstring,
some example
inputs/outputs, and
tests

Broader Domains:
CoNaLa/ODEX

(Yin et al. 2018, Wang et al. 2022)

• CoNaLa: Broader data scraped
from StackOverflow

• Wider variety of libraries

• ODEX: Adds execution-based
evaluation

Data Science
Notebooks: ARCADE

(Yin et al. 2022)

• Data science notebooks
(e.g. Jupyter) allow for
incremental
implementation

• Allows evaluation of code
in context

Dataset: SWEBench
(Jiminez et al. 2023)

• Issues from GitHub + codebases -> pull request

• Requires long-context understanding, precise
implementation

Metric: Pass@K
(Chen et al. 2021)

• Basic idea: “if we generate K examples, will at least
one of them pass unit tests”

• Generating only K will result in high variance, so we
generate N > K with C correct answers, and then
calculate expected value

Metric: Lexical/Semantic Overlap
• Issues w/ execution-based evaluation:

• Requires that code be easily executable (requires unit tests and hard in large
libraries)

• Ignores stylistic considerations
• BLEU: consider text n-gram overlap with human code
• CodeBLEU: also considers syntax and semantic flow (Ren et al. 2020)
• CodeBERTScore: BERTScore with CodeBERT trained on lots of code (Zhou et al. 2023)

An Aside: Dataset Leakage
• Leakage of datasets

is a big problem
• ARCADE shows that

novel notebooks are
harder than online
notebooks

• LiveCodeBench
(Jain et al. 2023)
shows that some
code LMs
outperform on
HumanEval

Existing New

Dataset: Design2Code
(Si et al. 2024)

• Code generation from web sites

• Also proposed Design2Code model

Metric: Visual Similarity of
Web Site

• Design2Code evaluates by two metrics
• High-level visual similarity: Similarity between

visual embeddings of the generated sites
• Low-level element similarity: Recall of each

individual element

Designing Observation/
Action Spaces

Coding Agents Must

• Understand repository structure
• Read in existing code
• Modify or produce code
• Run code and debug

Example: CodeAct (Wang et al. 2024)
• Interact w/ the environment through code

• Can execute bash commands, Jupyter commands
• Faster resolution, higher success than direct tool use

Example: SWE-Agent
(Yang+Jimenez et al. 2024)

• Define specialized tools that make it possible to
efficiently explore repositories and edit code

Example: OpenHands
(Wang et al. 2024)

• Defines “event
stream” for coding,
execution, and
browsing actions/
observations

• Implements SWE-
agents style actions
as “agent skills” that
can be called

Code-based LLMs

Basic Method: Code-
generating LM

• Feed instructions and/or input code to an LM
• Virtually all serious LMs are trained on code

nowadays, but some are specialized

Code Data Example:
The Stack 2

• Code pre-training dataset w/ license considerations

Method: Code Infilling
(Fried et al. 2022)

• In code generation, we often want to fill in code
• Solution: train for infilling

• It has a parameter, typically with b=10000

Method: Long-context Extension
(see Lu et al. 2024)

• In LMs, it is standard to use RoPE,
a method for encoding positional
information

• It does not generalize well beyond
the training data, but code is long!

32

• Position interpolation: Multiply θ by a constant scaling
factor (e.g. Cshort/Clong)

• Neural tangent kernel: Scale low-frequency
components, but maintain high-frequency components

Lots of Available Information
for Coding!

• Current code context
• Description of issue to fix
• Repo context
• Open tabs

Example: Copilot Prompting
Strategy (Thakkar 2023)

• Extract prompt given current doc and cursor position
• Identify relative path and language
• Find most recently accessed 20 files of the same

language
• Include: text before, text after, similar files, imported

files, metadata about language and path
• TL;DR: lots of prompt engineering to get most useful

context tin the prompt

File Localization

LLM-based Localization
• Finding the correct files given user intent

What problem or use case are you trying to solve? 
When in confirmation mode it's not possible to give instructions in between
steps. You have to reject an action and it seems like it doesn't know that the
action was rejected.

Describe the UX of the solution you'd like  
The simplest would be to have a third option, confirm action and wait. This way
the action is confirmed but before it tries to take the next step you are able to
give some feedback. Also if it somehow knows the action was rejected that
would be helpful as well so when you do reject an action it knows that action
wasn't taken.

https://github.com/All-Hands-AI/OpenHands/issues/4259
• Which JavaScript file should I modify?
• Analogous to environment understanding / exploration problems in other

agents

https://github.com/All-Hands-AI/OpenHands/issues/4259

Solution 1:
Offload to the User

• Experienced users familiar with prompting and the
project can specify which files to use

In .github/workflows/openhands-resolver.yml and .github/
workflows/openhands-resolver-experimental.yml, we should check to
make sure that all required environment variables are set before running any
additional workflows. If all of the variables are not set, we can fail immediately with
an error.

https://github.com/All-Hands-AI/openhands-resolver/issues/146

https://github.com/All-Hands-AI/openhands-resolver/issues/146

Solution 2:
Prompt the Agent w/ Search Tools
• e.g. SWE-agent provides a tool for searching repositories

Solution 3:
A-priori Map the Repo

• Create a map of the repo and prompt agent with it
• Aider repomap creates a tree-structured map of the

repo
• Agentless (Xia et al. 2024) does a hierarchical

search for every issue

Solution 4: Retrieval-
augmented Code Generation
• Retrieve similar code, and fill it in with a retrieval-

augmented LM (Hayati et al. 2018)
• Particularly, in code there is also documentation, which

can be retrieved (Zhou et al. 2022)

• Unsolved issue: when to perform RAG in agent

Planning and Error Recovery

Hard-coded Task
Completion Process

• e.g. Agentless (Xie et al. 2024) has a hard-coded
progress of
• File Localization
• Function Localization
• Patch Generation
• Patch Application

LLM-Generated Plans
• LLM-generated planning step, then one or more executors
• CodeR (Chen et al. 2024)

Planning and Revisiting
• CoAct goes back and fixes (Hou et al. 2024)

Fixing Based on Error
Messages

• e.g. InterCode (Yang et al. 2023)

Safety

Coding Models
can Cause Harm!

• By accident
• The coding model accidentally pushes to your

main branch
• The coding model is told to “make the tests

pass”, so it deletes the tests
• Intentionally

• Coding agents can be used for hacking (Yang et
al. 2023)

Safety Mitigation 1:
Sandboxing

●We can improve safety by limiting the
execution environment

●e.g. OpenHands execute all the actions in
Docker sandboxes

Safety Mitigation 2:
Credentialing

• The principle of least privilege
• Example: GitHub access tokens

https://github.com/settings/tokens?type=beta

https://github.com/settings/tokens?type=beta

Safety Mitigation 3:
Post-hoc Auditing

• e.g. OpenHands security analyzer
Action

Observation

OK NO
X

• Using LMs, analysis, or both

Conclusion

Summary
• Copilots already very useful, code agents getting there
• Current challenges: code LLMs, editing, localization,

planning, safety
• Future directions:

• Agentic training methods
• Human-in-the-loop
• Broader software tasks than coding

• Thanks! And you can try out agents yourself

https://github.com/All-Hands-AI/OpenHands

https://github.com/All-Hands-AI/OpenHands

Questions?

