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Abstract
This paper presents a novel speech modification method capa-
ble of controlling unobservable articulatory parameters based
on a statistical feature mapping technique with Gaussian Mix-
ture Models (GMMs). In previous work [1], the GMM-based
statistical feature mapping was successfully applied to acoustic-
to-articulatory inversion mapping and articulatory-to-acoustic
production mapping separately. In this paper, these two map-
ping frameworks are integrated to a unified framework to de-
velop a novel speech modification system. The proposed system
sequentially performs the inversion and the production map-
ping, making it possible to modify phonemic sounds of an input
speech signal by intuitively manipulating articulatory parame-
ters estimated from the input speech signal. We also propose a
manipulation method to automatically compensate for unmodi-
fied articulatory movements considering inter-dimensional cor-
relation of the articulatory parameters. The proposed system is
implemented for a single English speaker and its effectiveness
is evaluated experimentally. The experimental results demon-
strate that the proposed system is capable of modifying phone-
mic sounds by manipulating the estimated articulatory move-
ments and higher speech quality is achieved by considering the
inter-dimensional correlation in the manipulation.
Index Terms: speech modification, acoustic-to-articulatory in-
version mapping, articulatory-to-acoustic production mapping,
Gaussian mixture model, inter-dimensional correlation

1. Introduction
Articulators are a set of human speech organs that are used in
a unified way to control the resonance characteristics of the vo-
cal tract. Therefore, speech can be characterized by articulatory
parameters, such as movements of the articulators. Because the
articulatory parameters vary much more slowly than the acous-
tic parameters of speech [2], they have a potential to yield better
parameterization of speech in many applications such as speech
coding [3], speech recognition [4], and speech synthesis [5].
Furthermore, speech is more easily modified in an understand-
able way by manipulating articulatory parameters rather than
acoustic parameters [1, 6].

There have been many attempts at developing mapping sys-
tems between the speech acoustic parameters and the articu-
latory parameters [1, 3, 6, 7, 8, 9, 10, 11, 12, 13]. There are
mainly two mapping systems: one is an acoustic-to-articulatory
inversion mapping system to estimate the articulatory param-
eters from the given acoustic parameters and the other is an
articulatory-to-acoustic production mapping system to estimate
the acoustic parameters from the given articulatory parameters
[1]. One of the typical approaches to these mapping systems is
based on mathematical production models [3, 7]. However, the

speech production mechanism is too complex to be mathemati-
cally modeled without some approximations.

Recently,some research has examinedstatistical approaches
that do not mathematically model the speech production mecha-
nism. These mapping systems between articulatory parameters
and speech acoustics are developed in a data-driven manner us-
ing parallel acoustic-articulatory data.There have been proposed
several statistical methods, e.g., the mapping system using code-
books [8, 9], hidden Markov models (HMMs) [10, 11], neural
networks [12, 13], and Gaussian mixture models (GMMs) [1],
and their effectiveness has been confirmed in both the inversion
and production mapping. Moreover, it has been reported that
phoneme sounds of synthetic speech are effectively modified
by manipulating the articulatory parameters in articulatory con-
trollable HMM-based text-to-speech synthesis, where the artic-
ulatory parameters are modeled as intermediate features [6].

Inspired by the conventional work [1, 6], we propose
a novel articulatory controllable speech modification system.
Specifically we do so by developing a new speech analy-
sis/synthesis framework by combining the inversion and pro-
duction mapping to make it possible to modify speech signals
by manipulating the unobserved articulatory parameters. Such
a framework has a great potential to develop various new speech
applications, such as speech recovery for vocally disabled peo-
ple, pronunciation enhancement in speaking foreign languages,
and concealing messages by modifying phonemes/words.

In this paper, we focus on the GMM-based inver-
sion/production mapping methods [1] as one of the promis-
ing methods capable of easily being applied to any language.
Thanks to its independence of text/language specification input,
which is needed by [6], as only speech signals are needed as
the input of this system. In the proposed system, the articula-
tory parameters are first estimated from a given input speech
signal using a GMM-based inversion mapping system. These
articulatory parameters are manipulated, and then the acoustic
parameters are estimated from the manipulated articulatory pa-
rameters using a GMM-based production mapping system. Fi-
nally, a modified speech signal is generated from the estimated
acoustic parameters. We also propose an articulatory manipu-
lation method for refining unmodified parts of the articulatory
parameters according to the modified parts by considering their
inter-dimensional correlation.

2. GMM-based Inversion and Production
Mapping [1]

A simultaneously recorded speech and articulatory data set is
used as training data to construct the GMMs for the inver-
sion and production mapping. In this paper, we use speaker-
dependent GMMs. For articulatory parameters, we use 14-
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dimensional Electromagnetic articulograph (EMA) data, which
are provided in MOCHA [14]. Locations of seven articulators
(top lip, bottom lip, bottom incisor, tongue tip, tongue body,
tongue dorsum, and velum) are measured in x- and y- coordi-
nates on the midsagittal plane.

Let ct, st, and xt be spectral envelope parameters (i.e.,
mel-cepstrum in this paper), source excitation parameters (i.e.,
log-scaled F0 and log-scaled waveform power in this paper),
and the articulatory parameters. Time sequence vectors of
these parameters over an utterance are c =

[
c>1 , · · · , c>T

]>
,

s =
[
s>1 , · · · , s>T

]>
, and x =

[
x>1 , · · · ,x>T

]>
, respectively,

where T is the number of frames and > denotes the transposi-
tion of the vector.

2.1. Acoustic-to-articulatory inversion mapping

In the inversion mapping, spectral envelope parameters of an
input speech signal (the source features) are converted to the
corresponding articulatory parameters (the target features).

2.1.1. Source and target features in inversion mapping

The source features consist of a mel-cepstral segment fea-
ture vector extracted from mel-cepstrum parameters at multi-
ple frames around the current frame. The mel-cepstral segment
feature vector at frame t is denoted asOt, which is given by

Ot = A
[
c>t−L, · · · , c>t , · · · , c>t+L

]>
+ b, (1)

where linear transformation parametersA and b are determined
with principal component analysis for the training data in ad-
vance. On the other hand, a joint static and dynamic feature
vector of the articulatory parameters is used as the target fea-
ture, which is given byXt =

[
x>t ,∆x

>
t

]>
, where ∆xt is the

dynamic feature vector of the articulatory parameters at frame
t.

2.1.2. Training process in inversion mapping

A joint source and target feature vector [O>t ,X
>
t ]> is con-

structed at each frame in the training data. Then, the joint prob-
ability density function of the source and target features is mod-
eled with the GMM for the inversion mapping as follows:

P
(
Ot,Xt|λ(O,X)

)
=

M∑
m=1

α(O,X)
m N

([
O>t ,X

>
t

]>
;µ(O,X)

m ,Σ(O,X)
m

)
, (2)

where N (·;µ,Σ) is a Gaussian distribution with a mean vec-
tor µ and a covariance matrix Σ. λ(O,X) denotes a parameter
set of the GMM for the inversion mapping, which consists of
mixture-component weights α(O,X)

m , mean vectorsµ(O,X)
m , and

full covariance matrices Σ(O,X)
m of individual mixture compo-

nents. The mixture component index is m. The total number of
mixture components is M .

2.1.3. Conversion process

Given a time sequence of the mel-cepstral segment feature
vectors O, a time sequence of the articulatory parameters x
is determined by maximizing the conditional probability den-
sity function P

(
X|O,λ(O,X)

)
, which is analytically de-

rived from the GMM for the inversion mapping. In this pa-
per, an approximation of the conditional probability density

function using a single mixture component sequence m =
{m1, · · · ,mT } [15] is employed, where mt shows the mix-
ture component index at frame t. First, the suboptimum mixture
component sequence m̂(O) is determined as follows:

m̂(O) = arg max
m

P
(
m|O,λ(O,X)

)
. (3)

Then, the converted articulatory parameter sequence vector x̂ is
determined as follows:

x̂ = arg max
x

P
(
X|O, m̂(O),λ(O,X)

)
, (4)

subject toX = W (x)x, (5)

whereW (x) is a linear transform to expand the articulatory pa-
rameter sequence vector x into its joint static and dynamic fea-
ture sequence vectorX .

2.2. Articulatory-to-acoustic production mapping

In the production mapping, the spectral envelope parameters are
determined from both the articulatory parameters and the exci-
tation parameters.

2.2.1. Source and target features in production mapping

As the source features, a joint static and dynamic feature vec-
tor including not only the articulatory parameters but also the
source excitation parameters is used, which is given by Y t =[
x>t , s

>
t ,∆x

>
t ,∆s

>
t

]>
at frame t. On the other hand, as the

target features, a joint static and dynamic feature vector of the
mel-cepstrumCt =

[
c>t ,∆c

>
t

]>
is used at frame t.

2.2.2. Training process

The training process is basically the same as described in Sec-
tion 2.1.2. After constructing the joint source and target feature
vectors in the training data, the joint probability density func-
tion of the source and target features is modeled with the GMM
for the production mapping as follows:

P
(
Y t,Ct|λ(Y,C)

)
=

M∑
m=1

α(Y,C)
m N

([
Y >t ,C

>
t

]>
;µ(Y,C)

m ,Σ(Y,C)
m

)
, (6)

where λ(Y,C) denotes a parameter set of the GMM for the
production mapping, which consists of mixture-component
weights α(Y,C)

m , mean vectors µ(Y,C)
m , and full covariance ma-

trices Σ(Y,C)
m of individual mixture components.

2.2.3. Conversion process

The conversion process is also basically the same as described
in Section 2.1.3. Given a time sequence of the source feature
vectors Y , that of the converted mel-cepstrum parameters ĉ is
determined as follows:

m̂(Y ) = arg max
m

P
(
m|Y ,λ(Y,C)

)
, (7)

ĉ = arg max
c
P
(
C|Y , m̂(Y ),λ(Y,C)

)
(8)

subject toC = W (c)c, (9)

where W (c) is a linear transform to expand the static mel-
cepstrum sequence vector c into its joint static and dynamic
feature sequence vector C. Note that the global variance (GV)
[15] is also considered in the production mapping to improve
the converted speech quality.
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3. Articulatory Controllable Speech
Modification

The proposed articulatory controllable speech modification pro-
cess is shown in Figure 1. First a given input speech sig-
nal is analyzed to extract speech acoustic parameters, such as
mel-cepstrum parameters c and the source excitation param-
eters s including waveform power and F0. Then, the inver-
sion mapping is performed to determine the estimated articu-
latory parameters x̂ corresponding to the given input speech
signal from the mel-cepstral segment features O as described
in Section 2.1. Next, the estimated articulatory parameters
are modified manually, e.g., scaling movements of some ar-
ticulators or changing positions of some articulators to modify
phoneme sounds. After that, the production mapping is per-
formed to determine the estimated mel-cepstrum parameters ĉ
corresponding to the modified articulatory parameters x̂′ and
the extracted source excitation parameters s in the manner de-
scribed in Section 2.2. Finally, the modified speech signal is
generated from the estimated mel-cepstrum parameters ĉ and
the extracted source excitation parameters s using a vocoder.

In the manipulation of articulatory parameters, it is conve-
nient to manually control movements of a limited number of
articulators, e.g., only the movement of the tongue tip, rather
than to manually control all articulators simultaneously. In this
paper, we implement two manipulation methods to do so.

3.1. Simple manipulation method

The articulatory parameters at frame t estimated by the inver-
sion mapping are denoted as the D-dimensional vector x̂t =
[x̂t (1) , · · · , x̂t (D)]>. Then, the manipulated articulatory pa-
rameters x̂′t are defined by changing only components corre-
sponding to the movements of target articulators to be manipu-
lated; e.g., if only the first and second dimensional components
are changed to x̂′t (1) and x̂′t (2), respectively, x̂′t is given by
[x̂′t (1) , x̂′t (2) , x̂t (3) , · · · , x̂t (D)]

>.
This method is capable of easily manipulating only the

movements of the target articulators. However, because move-
ments of some articulators are strongly correlated to each other
[16], e.g., the movements of the tongue tip affects those of the
tongue body, this method possibly causes unnatural movements
of the articulators.

3.2. Manipulation method considering inter-dimensional
correlation of articulatory parameters

To consider the inter-dimensional correlation of the articulatory
parameters, we propose a second manipulation method based on
two stage inversion. After the inversion mapping and the sim-
ple manipulation of the articulatory parameters as mentioned
above, the modified components of the articulatory parameters
are appended to the source features. Then, the second stage in-
version mapping is performed to refine the other components
of the articulatory parameters using the conditional probability
density function derived from the GMM for the inversion map-
ping.

The modified articulatory parameter vector consisting of
only the manually modified components at frame t is given
by x̂(m)′

t . A time sequence vector of the joint static and dy-

namic feature vectors is given by X̂
(m)′

. On the other hand,
the unmodified articulatory parameter vector consisting of the
other components at frame t is given by x(u)

t and a time se-
quence vector of the joint static, and dynamic features is given
by X(u). The sum of the number of dimensions of x̂(m)′

t and

Figure 1: Proposed speech modification process
that of x(u)

t is equivalent to D. In the second stage inversion
mapping, the unmodified articulatory parameter sequence vec-
tor is determined as follows:

x̂(u) = arg max
x(u)

P

(
X(u)|O, X̂(m)′

, m̂(O),λ(O,X)

)
,(10)

subject toX(u) = W (x(u))x(u), (11)

where W (x(u)) is a linear transform to expand the unmodified
articulatory parameter sequence vector x(u) into its joint static
and dynamic feature vector sequence X(u). The mixture com-
ponent sequence m̂(O) is given by Eq. (3).

The conditional probability density function used in the in-
version mapping effectively models inter-dimensional correla-
tion of the articulatory parameters with the mixture-dependent
full covariance matrices. Therefore, the unmodified articulatory
parameters are automatically revised in Eq. (10) according to
the modified articulatory parameters. Note that the inter-frame
correlation of the articulatory parameters is also considered in
this revision due to the trajectory-based conversion framework
[1] using an explicit relationship between the static and dynamic
features shown in Eq. (11). Consequently, it is expected that
this manipulation method will yield more natural movements of
the articulatory parameters compared to the simple manipula-
tion method.

4. Experimental Evaluation
4.1. Experimental conditions

As a simultaneously recorded speech and articulatory data set,
we used one British male speaker’s data in MOCHA [14].
Speech data was sampled at 16 kHz. EMA data was used as
the articulatory data.

In speech acoustic parameter extraction, we used the
STRAIGHT analysis method [17] to calculate the spectral en-
velope at each frame. It was then converted into the 1st through
24th mel-cepstral coefficients as the spectral envelop parame-
ters. The current ± 10 frames were used to extract the mel-
cepstral segments for the inversion mapping as described in
Section 2.1.1. For the source excitation parameters, we used
log-scaled F0 values also including an unvoiced/voiced binary
decision feature and log-scaled power values extracted from
the STRAIGHT spectrum. The fixed-point analysis [18] in
STRAIGHT was employed to extract F0 values. For the articu-
latory parameters, we used 14-dimensional EMA data as briefly
explained in Section 2. These 14-dimensional articulatory fea-
ture vectors were converted to a Z-score (zero mean and unit
variance). Frame shift was set to 5 ms.

We used 350 sentences for training and the remaining
110 sentences for evaluation. The silence frames were re-
moved using phonetic segmentation information included in the
MOCHA. We trained two GMMs separately for the inversion
mapping and the production mapping, as described in Sections
2.1 and 2.2. The number of mixture components was optimized
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Figure 2: Mean Opinion Score (MOS) test result of the quality
of modified synthetic speech from both manipulation methods

so that estimation accuracy in each mapping was maximized
for the test data. The resulting numbers of mixture compo-
nents were 64 for both the inversion mapping and the production
mapping. In the inversion mapping, the correlation coefficient
between the estimated and natural articulatory parameters was
0.79. In the production mapping, mel-cepstral distortion be-
tween the estimated and natural mel-cepstra was 4.70 dB. In
the proposed sequential inversion and production mapping sys-
tem, we also evaluated the estimation accuracy of mel-cepstrum
without performing any modifications of the estimated articula-
tory parameters. The resulting mel-cepstral distortion between
the estimated and natural mel-cepstral was 4.45 dB.

Two subjective evaluations were conducted to measure the
performance of the proposed speech modification system. In
the first evaluation, we compared two articulatory modification
methods described in Sections 3.1 and 3.2 in terms of speech
quality by scaling the movements of an articulator. In the sec-
ond evaluation, we investigate whether the proposed system are
able to modify a specific phoneme by means of manipulating
the articulatory positions. For both of the evaluations, there
were ten listeners. Two of them were German native speakers,
seven of them were Indonesian native speakers, and one was
Vietnamese native speakers.

4.2. Speech quality evaluation for comparison of articula-
tory manipulation methods

We evaluated the quality of synthetic speech modified by the
proposed system. The tongue tip’s movement in y-coordinate
was scaled to several values over an utterance from one-fold
(i.e., without modification) to 5-fold. An opinion test was con-
ducted, setting the opinion score to a 5-point scale (5: excellent,
4: good, 3: fair, 2: poor, 1: bad). Every listener evaluated 15
distinct sentences, randomly selected from the test data, where
each of them were modified with two manipulation methods us-
ing five scaling settings.

Figure 2 shows the result. Speech quality degrades more as
the scaling value grows larger. The manipulation method con-
sidering the inter-dimensional correlation effectively reduces
this quality degradation. We can see that it enables the sys-
tem to keep speech quality of the modified speech equivalent to
that of the unmodified speech, when the scaling value is set to 2.
This result shows that the manipulation method considering the
inter-dimensional correlation is more effective than the simple
manipulation method.

Figure 3: Perception percentage of vowel in modified words
resulting from manipulation of tongue’s height position

4.3. Evaluation of phoneme sound modification

We investigated the feasibility of intentionally modifying cer-
tain phonemes with manual articulatory manipulations. We
picked three front vowels in English, /æ/, /E/ and /I/, where the
tongue tip’s height is the obvious difference between them [6];
i.e., /æ/ has the lowest position, /E/ has the middle position, and
I/ has the highest position. We selected 10 distinct words from
the test data, where each of them contained vowel /E/. Then, the
value of the tongue tip’s height at the center frame of the vowel
/E/ was shifted from -1.5 cm to +1.5 cm in 0.5 cm intervals,
relative to the originally observed position. A negative shift-
ing value means the tongue tip is shifted down, whilst a positive
value means it is shifted up. Spline interpolation was performed
to generate continuous movements of the tongue tip. The ma-
nipulation method considering sthe inter-dimensional correla-
tion was employed.

The result is shown in Figure 3. We can observe a clear
transition between /E/ and /I/, as the tongue tip’s height gets
higher. On the other hand, the transition is not so clear from
/E/ to /æ/, as the tongue tip’s height gets lower. However, we
can still observe a reasonable tendency that the perception rate
of /æ/ sound increases. Although further improvements will be
necessary, the proposed system has a great potential to achieve
manual modification of phoneme sounds of input speech by in-
tuitively manipulating unobservable articulatory parameters.

5. Conclusions
In this paper, we proposed a novel speech modification method
to make it possible to modify speech signals by manipulating
unobserved articulatory movements in a sequential flow of sta-
tistical inversion and production mapping with Gaussian mix-
ture models (GMMs). We also proposed a new articulatory
manipulation method to automatically refine unmodified artic-
ulatory movements according to the modified ones by consid-
ering the inter-dimensional correlation between individual ar-
ticulators. The experimental results showed that higher qual-
ity of the modified speech is yielded by considering the inter-
dimensional correlation in the articulatory manipulation and
that the proposed system is also capable of intentionally modi-
fying phoneme sounds by manipulating the articulatory param-
eters. We plan to further improve quality of the modified speech
and controllability of the articulatory parameters.
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