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Abstract

Recent works have shown that language mod-
els (LM) capture different types of knowledge
regarding facts or common sense. However,
because no model is perfect, they still fail to
provide appropriate answers in many cases.
In this paper, we ask the question “how can
we know when language models know, with
confidence, the answer to a particular query?”
We examine this question from the point of
view of calibration, the property of a prob-
abilistic model’s predicted probabilities actu-
ally being well correlated with the probabil-
ity of correctness. We first examine a state-of-
the-art generative QA model, T5, and examine
whether its probabilities are well calibrated,
finding the answer is a relatively emphatic no.
We then examine methods to calibrate such
models to make their confidence scores cor-
relate better with the likelihood of correct-
ness through fine-tuning, post-hoc probability
modification, or adjustment of the predicted
outputs or inputs. Experiments on a diverse
range of datasets demonstrate the effective-
ness of our methods. We also perform anal-
ysis to study the strengths and limitations of
these methods, shedding light on further im-
provements that may be made in methods for
calibrating LMs.

1 Introduction

Language models (LMs; Church (1988); Bengio
et al. (2003); Radford et al. (2019)) learn to model
the probability distribution of text, and in doing
so capture information about various aspects of
the syntax or semantics of the language at hand.
Recent works have presented intriguing results
demonstrating that modern large-scale LMs also
capture a significant amount of knowledge, includ-
ing factual knowledge about real-world entities
(Petroni et al., 2019; Jiang et al., 2020b; Roberts
et al., 2020; Bouraoui et al., 2020), commonsense

knowledge (Trinh and Le, 2018; Kocijan et al.,
2019; Talmor et al., 2019a; Bosselut et al., 2019),
and simple numerical operations (Wallace et al.,
2019; Talmor et al., 2019a; Geva et al., 2020). No-
tably, large models trained on massive crawls of
internet text (such as T5 (Raffel et al., 2019) and
GPT-3 (Brown et al., 2020)) have been shown to
be able to perform quite sophisticated knowledge-
based tasks simply through prompting the model
to predict the next words given a particular cue.

However, at the same time, LMs are obviously
not omnipotent, and still fail to provide appropri-
ate answers in many cases, such as when dealing
with uncommon facts (Poerner et al., 2019; Jiang
et al., 2020a) or complex reasoning (Talmor et al.,
2019a). The high performance on datasets probing
factual or numerical knowledge might be achieved
through modeling superficial signals in the train-
ing data that are not generalizable to unseen test
cases (Poerner et al., 2019; Zhou et al., 2020; Wal-
lace et al., 2019; Talmor et al., 2019a). Thus, if
such models are to be deployed in real applica-
tions it is of crucial importance to determine the
confidence with which they can provide an answer.
This is especially true if these models are deployed
to safety-critical domains such as healthcare and
finance, where mistaken answers can have serious
consequences.1

In this paper we ask the question “how can we
know when language models know, with confi-
dence, the answer to a particular knowledge-based
query?” Specifically, we examine this question
from the point of view of calibration, a metric in-
dicating whether a model’s probability estimates
are well-aligned with the actual probability of the
answer being correct. Specifically, we examine the
large-scale T5 model (Raffel et al., 2019), over a

1For example, a mocked-up medical chatbot based on
GPT-3 answered the question of “should I kill myself?” with
“I think you should” (Quach, 2020).



Format Input Candidate Answers Original Calibrated

Multiple-choice
Oxygen and sugar are the products of
(A) cell division. (B) digestion. (C)
photosynthesis. (D) respiration.

cell division. 0.00 0.02
digestion. 0.00 0.01
photosynthesis. 0.00 0.83
respiration. 1.00 0.14

Extraxctive

What type of person can not be at-
tributed civil disobedience?
Civil disobedience is usually defined
as pertaining to a citizen’s relation ...

head of government 0.07 0.49
public official 0.91 0.26
head of government of a country 0.01 0.16
public officials 0.01 0.09

Table 1: LM calibration examples with correct answers in bold. “Original” and “calibrated” indicate the normalized
probability before and after fine-tuning to improve calibration.

wide range of question answering (QA) datasets
(Khashabi et al., 2020) covering diverse domains.
We first observe that despite the model’s high
performance (eclipsing other alternatives such as
GPT-3), the model is not well calibrated, with its
probability estimates over the candidate it chooses
having little correspondence with the actual prob-
ability that the answer it provides is correct, as
shown in the original confidence column of Ta-
ble 1.

To alleviate this problem, we propose meth-
ods to perform confidence calibration on LMs to
make their confidence scores correlate better with
the likelihood of model output being correct. We
examined both fine-tuning methods that modify
LMs’ parameters and post-hoc methods that keep
LMs fixed and only manipulate the confidence val-
ues or inputs. Specifically, we fine-tune the LM
using softmax- or margin-based objective func-
tions based on multiple candidate answers. For
post-hoc calibration, we examined temperature-
based scaling and feature-based decision tree that
take prediction probability and input-related fea-
tures as input and produce calibrated confidence
(Jagannatha and Yu, 2020; Desai and Durrett,
2020). We also study the sensitivity of LMs’ con-
fidence estimation with respect to language varia-
tion by paraphrasing candidate answers and aug-
menting questions using retrieved context.

Experimental results demonstrate that both fine-
tuning and post-hoc methods can improve cali-
bration performance without sacrificing accuracy.
We further perform analysis and ablation study
on our methods, inspecting different aspects that
may affect calibration performance. We found that
like other neural models, LMs are over-confidence
most of the time with confidence close to either 0
or 1. As a result, post-processing confidence with
temperature-based scaling and feature-based deci-

sion tree is universally helpful. We also found that
LMs become better calibrated if we phrase each
answers in multiple ways and provide more evi-
dence through retrieval, indicating that LMs are
sensitive to both input and output. However, this
observation might not hold for larger LMs poten-
tially more knowledgeable or candidate answers
that are harder to distinguish.

2 LM-based Question Answering

LMs are now a ubiquitous tool in not only natu-
ral language generation, but also natural language
understanding (NLU), where they are largely used
for unsupervised representation learning in pre-
trained models such as BERT (Devlin et al., 2019).
However, recent work has demonstrated that LMs
can also be used as-is to solve NLU tasks, by pre-
dicting the missing words in Cloze-style questions
(Petroni et al., 2019), or by predicting the contin-
uation to prompts (Brown et al., 2020; Bosselut
et al., 2019).

Previous works that purport to calibrate LMs
(Desai and Durrett, 2020; Jagannatha and Yu,
2020) mainly focus on the former use case, using
representations learned by LMs to predict target
classes (for tasks such as natural language infer-
ence or part-of-speech tagging) or identify answer
spans (for tasks such as extractive QA). In con-
trast, we focus on the latter case, calibrating LMs
themselves by treating them as natural language
generators that predict the next words given a par-
ticular input.

To make our observations and conclusions as
general as possible, we experiment over a diverse
range of QA datasets with broad domain cov-
erage over questions regarding both factual and
commonsense knowledge (Khashabi et al., 2020;
Hendrycks et al., 2020; Rajpurkar et al., 2016,
2018; Trischler et al., 2017; Dasigi et al., 2019;



Lin et al., 2019; Richardson et al., 2013; Lai et al.,
2017; Mihaylov et al., 2018; Clark et al., 2018;
Khot et al., 2020; Talmor et al., 2019b; Bisk et al.,
2020; Sap et al., 2019; Sakaguchi et al., 2020). We
list all the datasets we used in Table 2 and their
corresponding domain. Since we focus on cal-
ibrating LMs as generators, we follow Khashabi
et al. (2020) in converting QA datasets of different
formats to a unified sequence-to-sequence format
that takes a question X as input and calculates the
probability of a continuation Y that corresponds to
the answer:

PLM(Y |X) =

|Y |∏
i=1

PLM(yi|X, y<i).

Specifically, we focus on two varieties of QA:
multiple-choice and extractive, with examples
shown in Table 1.2

Multiple-choice QA For multiple-choice QA,
we assume a question and a set of candidate an-
swers I(X) = {Ȳ (i)}i. Inputs X to LMs are
questions concatenated with multiple candidate
answers (with each answer prefaced by “(A)”,
“(B)”, etc.), and context such as a passage that can
be used to help answer the question if any exists.
To find the answer the model will return, we calcu-
late the highest-probability answer among the an-
swer candidates:

Ŷ = arg max
Y ′∈I(X)

PLM(Y ′|X).

We can also calculate the normalized probability

PN (Ŷ |X) =
PLM(Ŷ |X)∑

Y ′∈I(X) PLM(Y ′|X)

which provides some idea of the confidence of an-
swer Ŷ with respect to the candidate list.

Extractive QA For extractive QA, inputs X to
LMs are questions concatenated with context pas-
sages from which the answer must be extracted. In
this case, every span within the passage is a can-
didate answer, and enumerating over all possible

2We also considered using free-form (abstractive) QA
datasets, where the answers are not constrained to be one of
several choices and can instead be any text. However, we
found it hard to evaluate the correctness of generated outputs,
as paraphrases of the correct answer are still correct, so we do
not report results on these datasets in this paper. Solving this
evaluation problem and evaluating calibration on these tasks
is an enticing direction for future work.

Format Datasets and Domains

Multi-choice ARC (science), AI2 Science Questions
(science), OpenbookQA (science), Wino-
grande (commonsense), CommonsenseQA
(commonsense), MCTest (fictional sto-
ries), PIQA (physical), SIQA (social),
RACE (English comprehension), MT-test
(mixed)

Extractive SQuAD 1.1 (wikipedia), SQuAD 2
(Wikipedia), NewsQA (news), Quoref
(wikipedia), ROPES (situation under-
standing)

Table 2: Datasets used in this paper and their domains.

spans of the context passage is computationally
costly. Thus, we follow Jagannatha and Yu (2020)
to use a manageable set of candidate outputs to
perform calibration. Specifically, we perform top
K decoding using beam search to generate results
from LMs, and further include the ground truth an-
swer if it is not included in the decoding results.
Formally, we define I(X) = {Ȳ (i)}Ki=1 ∪ {Y },
where Ȳ is a decoding result and Y is the ground
truth. We use all candidates in I(X) to calcu-
late the probability in a manner similar to that of
multiple-choice QA.

3 Background on Calibration

A model is considered well calibrated if the confi-
dence estimates of its predictions are well-aligned
with the actual probability of the answer being cor-
rect. Given an input X and true output Y , a model
output Ŷ , and a probability PN (Ŷ |X) calculated
over this output, a perfectly calibrated model sat-
isfies the following condition:

P (Ŷ = Y |PN (Ŷ |X) = p) = p,∀p ∈ [0, 1].

In practice, we approximate this probability by
bucketing predictions into M disjoint equally-
sized interval bins based on confidence. Guo et al.
(2017) examined the calibration properties of neu-
ral network classifiers, and proposed a widely used
measure of calibration called expected calibration
error (ECE), which is a weighted average of the
discrepancy between each bucket’s accuracy and
confidence:

M∑
m=1

|Bm|
n
|acc(Bm)− conf(Bm)|, (1)

where Bm is the m-th bucket containing samples
whose prediction confidence falls into the inter-
val (m−1M , m

M ], acc(Bm) is the average accuracy



of this bucket, and conf(Bm) is the average con-
fidence of this bucket. The above equation can
be visualized using reliability diagrams (e.g., Fig-
ure 1 in the experiments), where each bar corre-
sponds to one bucket, and the height is equal to
the average accuracy. The diagram of a perfectly
calibrated model should have all bars aligned with
the diagonal.

Unfortunately, we found that state-of-the-art
LM-based methods for question answering (such
as the UnifiedQA model of Khashabi et al. (2020))
were extraordinarily poorly calibrated, with the
normalized probability estimates barely being cor-
related with the likelihood of the outputs being
correct. For the two examples in Table 1, for in-
stance, we can see that the language model assigns
very high probability to answers despite the fact
that they are wrong. This is particularly impor-
tant because with T5 (Raffel et al., 2019), GPT-3
(Brown et al., 2020), and others (Guu et al., 2020;
Lewis et al., 2020b) being provided as a poten-
tial answer to complex knowledge-based tasks, for
models to actually be used in practical scenarios
they must also be able to know when they can-
not provide correct information. In the following
section, we examine methods to improve the cali-
bration of pre-trained models through a number of
methods.

4 Calibrating LMs for Question
Answering

Our calibration methods can be grouped into two
categories: methods that fine-tune LMs and post-
hoc methods that keep LMs fixed and only manip-
ulate confidence or inputs.

4.1 Fine-tuning-based Calibration

Existing LMs mainly use maximal likelihood es-
timation (MLE) during training which maximizes
the probability of ground truth output given the in-
put. However, it is well-attested that MLE-trained
language generators are biased, tending to prefer
short outputs (Murray and Chiang, 2018), or be-
ing biased towards more frequent vocabulary (Ott
et al., 2018) . However, in the case where we know
a set of reasonable candidates I(X), one straight-
forward way to fine-tune LMs is to only consider
candidates in I(X) and directly tune PN (Ŷ |X) to
be a good probability estimate of the actual out-
puts. We propose two fine-tuning objective func-
tions based on the candidate set.

Softmax-based objective functions model can-
didates in a one-vs-all setting, where we use the
softmax function to normalize confidence of can-
didates and maximize the probability correspond-
ing to the correct candidate. We use the negative
log likelihood as the loss function:

L(X,Y ) = − log
exp(s(Y ))∑

Y ′∈I(X) exp(s(Y ′))
,

where the ground truth Y is one of the candi-
dates in I(X), and s(·) is the logit of the corre-
sponding output (omit condition X for simplic-
ity), which is computed as the average of log
probabilities of all tokens in the output: s(Y ) =∑|Y |

i=1 logPLM(yi|X,y<i)
|Y | .

Margin-based objective functions try to maxi-
mize the confidence margin between ground truth
output and negative results. This is motivated
by the fact that non-probabilistic objectives such
as those used by support vector machines pro-
vide reasonably good probabilistic estimates af-
ter appropriate scaling and adjustment (Platt et al.,
1999). Specifically, we use the following objec-
tive:

L(X,Y ) =
∑

Y ′∈I(X)\Y ′

max(0, τ + s(Y ′)− s(Y )).

4.2 Post-hoc Calibration
Comparing to fine-tuning methods that optimize
the parameters in the model, post-hoc calibration
methods keep the model as-is and manipulate var-
ious types of information derived from the model
to derive good probability estimates (Guo et al.,
2017; Jagannatha and Yu, 2020; Desai and Dur-
rett, 2020). In this section, we consider two as-
pects of the model: model probabilities PN (Ŷ |X)
and features of the model inputs X or outputs Y .
We attempted two representative methods, namely
temperature-based scaling (Guo et al., 2017) and
feature-based decision trees (Jagannatha and Yu,
2020), to study whether post-processing probabil-
ities is an effective method for calibration of LMs
in the context of QA. Motivated by the fact that
LMs are sensitive to textual variation, we also con-
sider manipulating either input text or candidate
outputs to improve confidence estimation.

Temperature-based Scaling methods are first
proposed on classification tasks (Guo et al., 2017;
Desai and Durrett, 2020), where a positive scalar



temperature hyperparameter τ is introduced in
the final classification layer to make the proba-
bility distribution either more peaky or smooth:
softmax(z/τ). If τ is close to 0, the class with
largest logit receives most of the probability mass,
while as τ approaches ∞, the probability dis-
tribution becomes uniform. When applying this
method to our setting, we use log probabilities of
the candidates in I(X) as logits in computing the
softmax function: z = logP (Y ′), Y ′ ∈ I(X),
and τ is optimized with respect to negative log
likelihood on the development split.

Feature-based Decision Tree methods explore
non-linear combinations of features to estimate the
confidence comparing to temperature-based scal-
ing which only considers the raw confidence. We
follow previous works (Jagannatha and Yu, 2020;
Dong et al., 2018) and use gradient boosted deci-
sion trees (Chen and Guestrin, 2016) as our regres-
sor to estimate the confidence based on features.
Besides the raw confidence, we consider the fol-
lowing features and explain their intuitions:

• Model Uncertainty: We use the entropy of
the distribution over the candidate set I(X)
as a feature to inform the regressor of how
uncertain the LM is with respect to the ques-
tion.

• Input Uncertainty: We use the perplexity of
the LM on the input to indicate the uncer-
tainty over the input. The intuition is that
low perplexity might indicate that the input
comes from a distribution different from the
training distribution of the LM.

• Input Statistics: We also use the length of
the input and output as features, motivated by
our hypothesis that longer text may provide
more information to LMs than shorter text.

We train the regressor on the development set sim-
ilarly as temperature-based scaling by minimizing
negative log likelihood.

4.3 LM-Specific Methods
In addition to standard methods that are applicable
to most prediction models, we also examine sev-
eral methods that are specific to the fact that we
are using LMs for the task of QA.

Candidate Output Paraphrasing Motivated
by the fact that LMs are sensitive to language vari-
ations (Jiang et al., 2020b) in tasks like question

Input How would you describe Addison? (A) ex-
cited (B) careless (C) devoted. Addison
had been practicing for the driver’s exam
for months. He finally felt he was ready,
so he signed up and took the test.

Paraphrases &
Probabilities

devoted (0.04), dedicated (0.94), commit-
ment (0.11), dedication (0.39)

Table 3: An example question with the correct answer
in bold. Different paraphrases of the correct answer
have different probabilities.

answering and factual prediction, we hypothesize
that one potential reason why the confidence esti-
mation of LMs is not accurate is because the can-
didate output is not worded in such a way that the
LM would afford it high probability. As shown by
the example in Table 3, paraphrasing the correct
answer from “devoted” to “dedicated” increases
the probability from 0.04 to 0.94. Motivated by
this, we use a round-trip translation model to para-
phrase each candidate output Y ′ ∈ I(X) into sev-
eral other expressions by first translating it into
another language and then back-translating it to
generate a set of paraphrases para(Y ′). We then
calculate the probability of each candidate out-
put by summing the probability of all paraphrases
P (Y ′) =

∑
Q∈para(Y ′) PLM(Q|X). By collec-

tively considering multiple paraphrases, the issue
of sensitivity to wording can be alleviated some-
what, as there will be a higher probability of ob-
serving a paraphrase that is afforded high proba-
bility by the model.

Input Augmentation Previous work has found
that LMs’ factual predictions can be improved if
more context is provided (Petroni et al., 2020a),
which has inspired many retrieval-augmented
LMs that retrieve evidence from external resources
and condition the LMs’ prediction on this evi-
dence (Guu et al., 2020; Lewis et al., 2020a,b). We
hypothesize that retrieving extra evidence to aug-
ment the input also has the potential to improve
the confidence estimation of LMs as it will provide
the model more evidence upon which to base both
its predictions and its confidence estimates. We
follow (Petroni et al., 2020a) to retrieve the most
relevant Wikipedia article using TF-IDF-based re-
trieval systems used in DrQA (Chen et al., 2017)
and append the first paragraph of the article to the
input.



5 Experiments

5.1 Experimental Settings

Datasets We evaluate the calibration perfor-
mance on both multiple-choice QA datasets and
extractive QA datasets listed in Table 2. To test
whether our calibration methods can generalize
to out-of-domain datasets, we use a subset of
datasets of multiple-choice/extractive QA to train
our methods, and the remaining subset of datasets
to evaluate the performance. Specifically, we
use ARC (easy), AI2 Science Question (elemen-
tary), OpenbookQA, QASC, Winogrande, Com-
monsenseQA, and PhysicalIQA as the training
subset for multiple-choice QA (denoted as MC-
train), and SQuAD 1.1, NewsQA as the training
subset for extractive QA (denoted as Ext-train).
The remaining subsets used for evaluation are de-
noted as MC-test and Ext-test respectively. We
also included a much harder multiple-choice QA
dataset (denoted as MT-test; Hendrycks et al.
(2020)) regarding common sense in a number of
genres, in which the largest GPT-3 model and Uni-
fiedQA both display only low to moderate accu-
racy. For fine-tuning methods, we use the train
split of MC-train/Ext-train to fine-tune the LMs.
For post-hoc methods like temperature-based scal-
ing and decision trees, we follow previous work
(Guo et al., 2017) to use the development split of
MC-train/Ext-train to optimize the parameters.3

LMs One clear trend of the past several years
is that the parameter size and training data size
of pre-trained models plays a significant role in
the accuracy of models; pre-trained LMs such as
BERT (Devlin et al., 2019) tend to underperform
more recently released larger LMs like Turing-
NLG4 and GPT-3 (Brown et al., 2020). Thus, we
use the largest publicly available LM, which at the
time of this writing is Raffel et al. (2019)’s T5
model . The T5 model is a sequence-to-sequence
model with both encoder and decoder using trans-
formers (Vaswani et al., 2017), and the largest ver-
sion has 11 billion parameters, allowing it to re-
alize state-of-the-art performance on tasks such
as question answering and natural language un-
derstanding (Roberts et al., 2020; Khashabi et al.,
2020).

Specifically, we use two varieties of this model.

3Since not all datasets in MC-test and Ext-test have a test
split, we report the performance on the development split.

4https://msturing.org/

The original T5 model is a sequence-to-sequence
model trained on a large corpus of web text,
specifically trained on a denoising autoencoding
objective that generates missing tokens given in-
puts with some tokens masked out. The Uni-
fiedQA model, uses the initial T5 model and fine-
tunes on a variety of QA datasets by converting
multiple-choice, extractive QA formats into a uni-
fied sequence-to-sequence format, similar to the
one that we show in Table 1. We use the 3B ver-
sions in our main experiments in subsection 5.3
(for efficiency purposes), but also report the per-
formance of the largest 11B versions in ablation
studies subsection 5.5.

Evaluation Metrics We use accuracy to mea-
sure the prediction performance of our methods,
and ECE to measure the calibration performance.
Accuracy is computed as the ratio of question-
answer pairs for which the correct answer has
the highest probability among all the candidates
in I(x). ECE is computed using Equation 1 by
bucketing all candidates answers in I(x) based
on confidence. For MC-test and Ext-test which
include multiple datasets, we compute accuracy
and ECE on each dataset separately and average
across them to avoid the metrics being dominated
by large datasets.

Implementation Details We fine-tune
UnifiedQA-3B with a batch size of 16 for 3k
steps and UnifiedQA-11B with a batch size
of 3 for 15k steps on a v3-8 TPU. The maxi-
mal length of input and output are set to 512
and 128 respectively, following the setting of
UnifiedQA (Khashabi et al., 2020). For the
paraphrasing-based method, we use the WMT-19
English-German and German-English transformer
models to perform back translation (Ng et al.,
2019). The beam size is set to 10 for both
directions, which will yield 10 × 10 = 100
paraphrases in the end. Since some paraphrases
are duplicated, we count the frequency and use the
top 5 unique paraphrases in our main experiments
subsection 5.3. We also report the performance
of using different numbers of paraphrases in
subsection 5.5. For the retrieval-based augmen-
tation, we use the KILT toolkit (Petroni et al.,
2020b) to retrieve the most relevant article from
the Wikipeida dump, and append the first three
sentences of the first paragraph of the retrieved
article to the input. For the feature-based decision

https://msturing.org/


tree model, we use XGBoost (Chen and Guestrin,
2016) with logistic binary objective, max depth of
4, number of parallel trees of 5, and subsample
ratio of 0.8. We use Temp. to denote temperature-
based scaling, XGB to denote feature-based
decision tree, Para. to denote paraphrasing, Aug.
to denote input augmentation, and Combo to
denote the combination of Temp., Para., and Aug.
in the experimental section. We use the model
with the best calibration performance in post-hoc
calibration experiments. For multiple-choice QA,
we use the UnifiedQA model after margin-based
fine-tuning. For extractive QA, we use the original
UnifiedQA model.

5.2 Are LM-based QA Models Well
Calibrated?

As shown in Table 4, our baseline models (i.e., T5
and UnifiedQA) are strong, achieving state-of-the-
art accuracy on a diverse range of QA datasets. On
the MT-test datasets, the UnifiedQA model even
outperforms the largest version of GPT-3 with 175
billions of parameters (Hendrycks et al., 2020).
Despite the impressive performance, these mod-
els are not well-calibrated, with ECE higher than
0.2 on the MT-test dataset. We found that LMs
tend to be over-confident about cases they do not
know, as shown in the confidence distribution in
the first row of Figure 2 that most predictions have
aggressive confidence being close to 0 or 1. The
UnifiedQA model assigns high confidence to the
wrong answer for the two examples in Table 1, in-
dicating that it confidence estimates are not trust-
worthy.

5.3 Can LM-based QA Models be
Calibrated?

We calibrate the UnifiedQA model using both
fine-tuning-based methods and post-hoc methods
and show their performance in Table 4 and Table 5
respectively.

Overall, on multi-choice QA datasets (i.e., MC-
test and MT-test), both fine-tuning-based meth-
ods and post-hoc methods can improve ECE while
maintaining accuracy comparing to the baseline
UnifiedQA model. The best-performing method
(i.e., Combo), which combines margin-based fine-
tuning, temperature-based scaling, paraphrasing,
and input augmentation, improves ECE from
0.095 to 0.051 by over 46%. As shown in the reli-
ability diagrams of the original UnifiedQA model
(top-right) and the UnifiedQA model calibrated

Method MC-test MT-test Ext-test
ACC ECE ACC ECE ACC ECE

T5 0.313 0.231 0.268 0.248 0.325 0.190
UnifiedQA 0.769 0.095 0.437 0.222 0.457 0.136

+ softmax 0.773 0.093 0.439 0.219 0.501 0.157
+ margin 0.770 0.088 0.437 0.207 0.510 0.143

Table 4: Performance of different fine-tuning methods.

with Combo (bottom-left) in Figure 1, calibration
using our methods makes the confidence estimates
of predictions better aligned with the their correct-
ness. Comparing those two diagrams, an interest-
ing observation is that our method seems to over-
calibrate the LM, making over-estimated bars one
the right-hand side of the top-right diagram (bars
lower than the diagonal) under-estimated and vice
versa. This is probably caused by the temperature
being too aggressive (i.e., too large), making the
distribution too flat. Note that the datasets used
to learn the temperature (MC-train) and used in
evaluation (MC-test) are different, which we hy-
pothesize is the reason why the temperature is too
aggressive. We verify this by learning an ora-
cle temperature on the evaluation datasets (MC-
test). The learned temperature indeed becomes
smaller (2.58 → 1.79), and the reliability dia-
gram (bottom-right in Figure 1) is almost perfectly
aligned. This demonstrates the challenge of cali-
brating LMs across different domains.

However, on extractive QA datasets, only
tempature-based scaling and decision trees could
improve ECE. We hypothesize this is because the
candidate set I(X) generated by beam search de-
coding for extractive QA are harder to calibrate
than the manually curated candidate answers for
multiple-choice QA. We compute the average en-
tropy of the confidence of the UnifiedQA model
over I(X) on both extractive QA (Ext-test) and
multiple-choice QA datasets (MC-test), and found
that Ext-test indeed has much higher entropy com-
paring to MC-test (0.40 vs 0.13), which partially
explains the difficulty of calibration on extractive
QA datasets.

5.4 Analysis of Individual Calibration
Methods

In this section, we discuss each method in detail
and analyze why they can improve the calibration
performance.

Objective Function Matters. The original Uni-
fiedQA model is fine-tuned based on MLE that



Method MC-test MT-test Ext-test
ACC ECE ACC ECE ACC ECE

Baseline 0.770 0.088 0.437 0.207 0.457 0.136

+ Temp. 0.770 0.065 0.437 0.071 0.457 0.126
+ XGB 0.769 0.063 0.435 0.107 0.506 0.070
+ Para. 0.776 0.074 0.439 0.180 0.432 0.139
+ Aug. 0.751 0.084 0.438 0.185 0.464 0.132

+ Combo 0.756 0.051 0.442 0.070 0.419 0.096

Table 5: Performance of different post-hoc methods
using the UnifiedQA model after margin-based fine-
tuning or the original UnifiedQA model as the base-
line model. “+Combo” denotes the method using both
Temp., Para., and Aug.

(a) T5 (b) UnifiedQA

(c) UnifiedQA w/ Combo (d) UnifiedQA w/ Combo and
oracle temperature

Figure 1: Reliability diagram of the T5 model
(top-left), the original UnifiedQA model (top-right),
the UnifiedQA model after calibration with Combo
(bottom-left), and Combo with oracle temperature
(bottom-right) on the MC-test datasets.

maximizes the probability of the gold answer
given the question. Both softmax-based and
margin-based fine-tuning can further improve
ECE on multiple-choice datasets, which explicitly
compares and adjusts the probability of candidates
answers. We argue that the softmax-based and
margin-based objective functions are better suited
for questions with potential candidates.

Post-processing Confidence is Effective Univer-
sally. Post-processing the raw confidence either
solely based the confidence or other features is ef-
fective across all datasets, which is consistent with
the conclusion on other tasks such as structured
prediction and natural language inference (Jagan-
natha and Yu, 2020; Desai and Durrett, 2020). We

(a) T5 (b) UnifiedQA

(c) UnifiedQA w/ Temp. (d) UnifiedQA w/ XGB

Figure 2: The ratio of predictions with respect to confi-
dence of the T5 model (top-left), the UnifiedQA model
(top-right), the UnifiedQA model after temperature-
based calibration (bottom-left), and the UnifiedQA
model after feature-based calibration (bottom-right) on
the MC-test datasets.

demonstrate the histogram of confidence before
and after applying temperature-based scaling or
feature-based decision tree in Figure 2. LMs tend
to be over-confidence, with most predictions hav-
ing either extremely high or low confidence. Both
methods can successfully re-scale the confidence
to reasonable ranges, thus improving the calibra-
tion performance.

Paraphrasing Answers and Input Augmenta-
tion can Improve Confidence Estimation. The
improvement brought by using paraphrasing is
significant on multiple-choice datasets, demon-
strating that using diverse expressions can in-
deed improve confidence estimation. To get in-
sights about under what circumstances paraphras-
ing works, we group candidate answers into two
categories: the first group includes candidate an-
swers that becomes better calibrated using para-
phrases; the second group includes candidate an-
swers whose confidence remains the same using
paraphrases. We say that a candidate becomes bet-
ter calibrated if its confidence increases/decreases
by 20% if it is a correct or incorrect answer re-
spectively. We found that the average length of
questions for better calibrated candidates (187) is
much shorter than that of candidates without im-
provement (320), indicating that paraphrasing is
useful mainly for short questions. We also com-
pute the diversity of word usage in paraphrases
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Figure 3: ECE of the UnifiedQA models using different
numbers of paraphrases on the MC-test datasets.

using the number of unique words divided by the
total length of paraphrases. We found that better
calibrated candidates have slightly higher diversity
(0.35 vs 0.32), which is consistent with our intu-
ition. Retrieval-based augmentation can also im-
prove calibration performance on multiple-choice
datasets, which is probably because the retrieved
documents can provide extra evidence about the
question, making LMs more robust at confidence
estimation.

Calibration Methods are Complementary.
By combining margin-based fine-tuning,
temperature-based scaling, paraphrasing, and
input augmentation, we achieve the best ECE on
multiple-choice QA datasets, demonstrating that
these calibration methods are complementary to
each other.

5.5 Ablation Study
In this section, we performance ablation study
to examine different aspects of LM calibration,
including calibration performance using different
numbers of paraphrases, across LMs with different
sizes, and across datasets with potential domain
shift.

Performance of Different Numbers of Para-
phrases. In Figure 3, we experiment with differ-
ent numbers of paraphrases using the UnifiedQA
model on MC-test datasets. The overall trend is
that the more paraphrases we use, the better cali-
brated the LM, demonstrating that using different
variations to express the candidate answer can im-
prove confidence estimation. The improvement of
using more than 10 paraphrases are subtle, so 5-10
paraphrases are good in practical settings consid-
ering the trade-off between computational cost and
performance.

Performance of LMs with Different Sizes. We
conduct experiments using the largest version (i.e.,
11B) of the T5 and UnifiedQA model to analyze
how calibration performance varies with respect

Method MC-test MT-test
ACC ECE ACC ECE

T5 0.359 0.206 0.274 0.235
UnifiedQA 0.816 0.067 0.479 0.175

+ softmax 0.829 0.087 0.499 0.241
+ margin 0.820 0.076 0.491 0.173

+ Temp. 0.820 0.046 0.491 0.117
+ XGB 0.816 0.040 0.493 0.131
+ Para. 0.818 0.070 0.492 0.190
+ Aug. 0.816 0.077 0.501 0.190

+ Combo 0.811 0.040 0.504 0.074

Table 6: Performance of the 11B LMs.

to the size of the LM. We found that larger LMs
usually achieve both higher accuracy and better
calibration performance, which is contradictory
to the observation in image classification (Guo
et al., 2017) where larger models such as ResNet
(He et al., 2016) are no longer well-calibrated
comparing to smaller models like LeNet (Lecun
et al., 1998). Given the fact the size of both
the pre-training corpus and LMs are extremely
larger comparing to previous practice, we might
have completely different observations with re-
spect to confidence estimation. Overall, our meth-
ods can improve ECE from 0.067 to 0.040 us-
ing the 11B UnifiedQA model on the MC-test
dataset. However, comparing to the 3B version,
fine-tuning-based, paraphrasing, and input aug-
mentation methods are no longer effective, which
is probably because the 11B version is better opti-
mized and more knowledgeable.

Performance on Training and Evaluation
Datasets. As introduced in the experimental
section, we perform calibration on the MC-train
dataset and evaluate the final performance on
the MC-test dataset to study whether our cali-
bration methods can generalize to out-of-domain
dataset. We compare the performance on the train-
ing dataset and the evaluation dataset in Table 7.
We found that on both datasets, each individ-
ual method can improve ECE, indicating that our
method can generalize to out-of-domain datasets.
Note that the improvement on the training dataset
(0.133→ 0.053) is larger than on improvement on
the evaluation dataset (0.095 → 0.051), which is
probably caused by the domain shift between two
datasets.



Method MC-train MC-test
ACC ECE ACC ECE

T5 0.334 0.228 0.313 0.231
UnifiedQA 0.727 0.133 0.769 0.095

+ softmax 0.746 0.121 0.773 0.093
+ margin 0.735 0.121 0.770 0.088

+ Temp. 0.735 0.078 0.770 0.065
+ XGB 0.732 0.086 0.769 0.063
+ Para. 0.734 0.095 0.776 0.074
+ Aug. 0.722 0.108 0.751 0.084

+ Combo 0.719 0.053 0.756 0.051

Table 7: Performance comparison between training and
evaluation datasets.

6 Related Work

Calibration Calibration is a well-studied topic
in other tasks such as medical diagnosis (Jiang
et al., 2012) and image recognition (Guo et al.,
2017; Lee et al., 2018). Previous works in NLP
have examined calibration in structured predic-
tion problems such as part-of-speech tagging and
named entity recognition (Jagannatha and Yu,
2020), natural language understanding tasks such
as natural language inference and paraphrase de-
tection (Desai and Durrett, 2020). In contrast, we
focus on calibrating LMs themselves by treating
them as natural language generators that predict
the next words given a particular input.

LM probing Previous works probe pre-trained
LMs with respect to syntactic and semantic prop-
erties (Hewitt and Manning, 2019; Tenney et al.,
2019), factual knowledge (Petroni et al., 2019; Po-
erner et al., 2019; Jiang et al., 2020b), common-
sense knowledge (Trinh and Le, 2018; Kocijan
et al., 2019), and other properties (Talmor et al.,
2019a). These works usually focus on what LMs
know, while in this paper we also consider the
cases when LMs do not know the answer with con-
fidence.

7 Conclusion

In this paper, we examine the problem of cali-
bration in LMs used for QA tasks. We first note
that despite the impressive performance state-of-
the-art LM-based QA models tend to poorly cali-
brated in their probability estimates. To alleviate
this problem, we attempted several methods to ei-
ther fine-tune the LMs, or adjust the confidence
by post-processing raw probabilities, augmenting
inputs, or paraphrasing candidate answers. Ex-
perimental results demonstrate the effectiveness of

these methods. Further analysis reveals the chal-
lenges of this problem, shedding light on future
work on calibrating LMs.
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