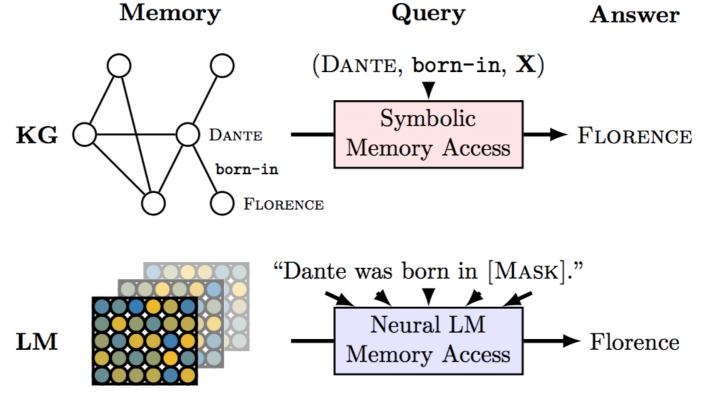
Probing Knowledge in LMs

- Traditional QA/MRC models usually refer to external resources to answer questions, e.g., Wikipedia articles or KGs.
- Do LMs pre-trained on a large text corpus already capture those knowledge?

LMs as KBs? (Petroni et al. 2019)

- Structured queries (e.g., SQL) to query KBs.
- Natural language prompts to query LMs.



e.g. ELMo/BERT

LMs as KBs? (Petroni et al. 2019)

- LAMA benchmark
 - Manual prompts for 41 relations: "[X] was born in [Y]."
 - Fill in subjects and have LMs (e.g., BERT) predict objects: "Barack Obama was born in [MASK]."
 - Accuracy: ELMo 7.1%, Transformer-XL 18.3%, BERT-base 31.1%

Prediction	Score	
Barack Obama was born in Chicago .	5.9%	
Barack Obama was born in Philadelphia .	3%	
Barack Obama was born in Illinois .	1.5%	
Barack Obama was born in Detroit .	1.4%	
Barack Obama was born in Pennsylvania .	1.4%	

https://demo.allennlp.org/masked-lm/s/barack-obama-was-born-mask/D8T2D0I009

How Can We Know What LMs Know? (Jiang et al. 2019)

- Query LMs with different prompts might lead to different predictions.
- Ensemble multiple mined/paraphrased prompts further increase the accuracy: $31.1\% \rightarrow 39.6\%$

Prompts						
	manual DirectX is developed by		y_{max}	L		
	mined	ed y _{mine} released the Direct		ctX		
paraphrased DirectX is created by ypara						
Top 5 predictions and log probabilities						
			56 0100	abintics		
	y_{man}	${\mathcal Y}_{ ext{mine}}$		J	'para	
1	Intel -1.06	<u>Microsoft</u>	-1.77	Micros	<u>soft</u>	-2.23
2	Microsoft -2.21	They	-2.43	Intel		-2.30
3	IBM -2.76	It	-2.80	defau	lt	-2.96
4	Google -3.40	Sega	-3.01	Apple		-3.44
5	Nokia -3.58	Sony	-3.19	Google	9	-3.45

AutoPrompt: Automatically Generated Prompts: (Shin et al. 2020)

- Search tokens in the prompts (i.e., trigger tokens [T]) guided by gradients that maximize the probability of correct answers.
- Further increase the accuracy: $39.6\% \rightarrow 43.3\%$

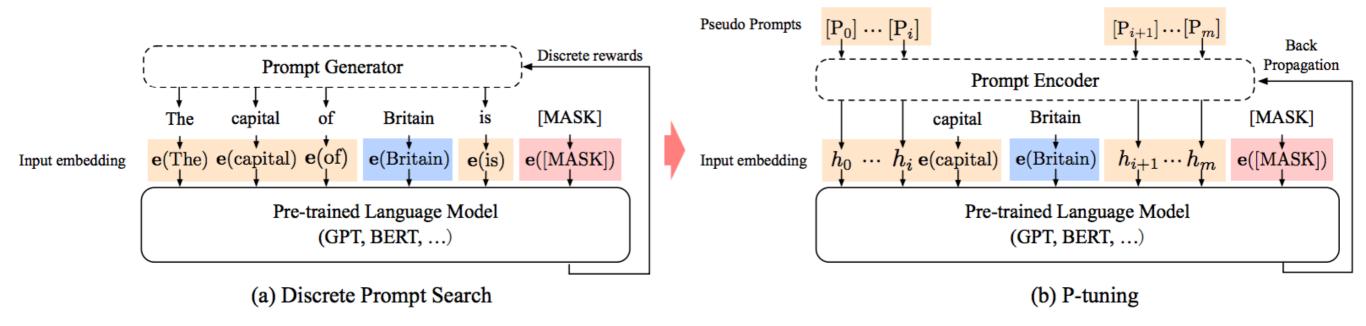
X plays Y music {sub}[T]...[T][P].

Hall Overton fireplacemade antique son alto [MASK].

Relation	Method	Prompt	P@1
P101	Manual AutoPrompt BERT AutoPrompt RoBERTa	 [X] works in the field of [Y] [X] probability earliest fame totaled studying [Y] [X] 1830 dissertation applying mathsucci [Y] 	11.52 15.01 0.17
P103	Manual AutoPrompt BERT AutoPrompt RoBERTa	The native language of [X] is [Y] [X]PA communerug speaks proper [Y] [X]neau optionally fluent!?traditional [Y]	74.54 84.87 81.61
P106	Manual AutoPrompt BERT AutoPrompt RoBERTa	 [X] is a [Y] by profession [X] supporters studied politicians musician turned [Y] [X] (), astronomers businessman former [Y] 	0.73 15.83 19.24
P127	Manual AutoPrompt BERT AutoPrompt RoBERTa	[X] is owned by [Y][X] is hindwings mainline architecture within [Y][X] picThom unwillingness officially governs [Y]	36.67 47.01 39.58

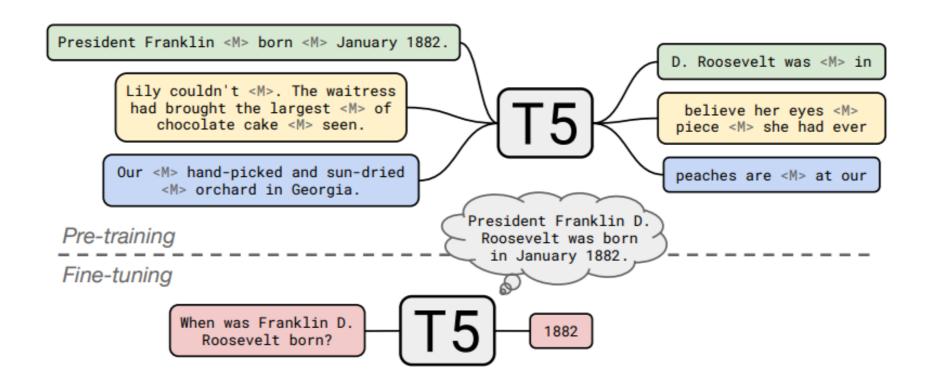
P-tuning: Directly Optimize Embeddings (Liu et al. 2021)

- Optimizing embeddings (continuous) is easier than searching tokens (discrete).
- Further increase the accuracy: 43.3% \rightarrow 48.3%



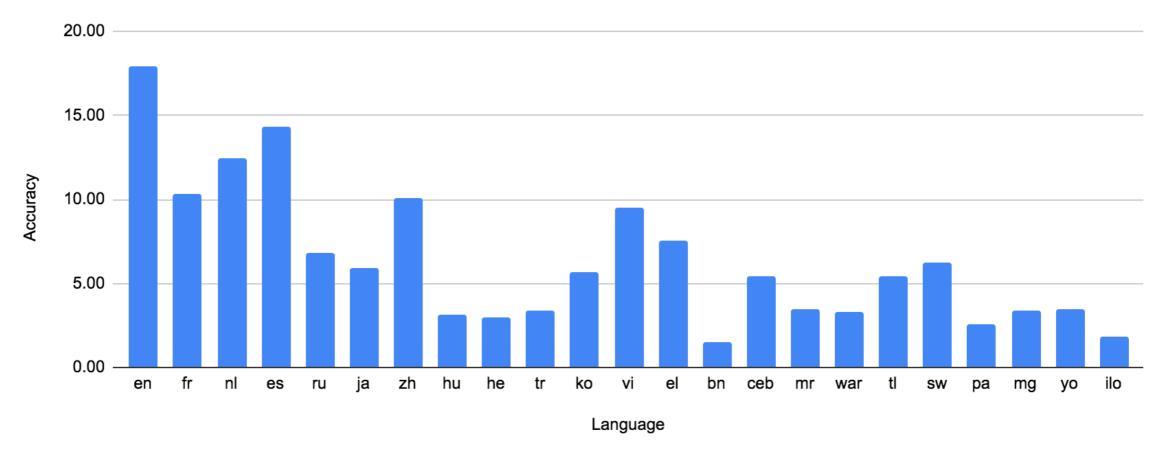
Close-book T5: Directly Finetune with QA Pairs (Roberts et al. 2020)

- Generate answers given questions without additional context.
- Performs even better than QA models with retrieved context (such as DrQA).



X-FACTR: Multilingual Factual Knowledge Probing (Jiang et al. 2020)

 Overall, factual knowledge in LMs is still limited, especially for low-resource languages.

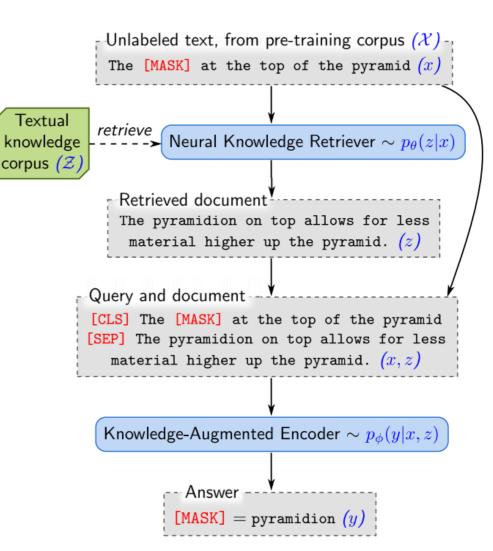


Max performance of M-BERT, XLM, XLM-R

Nonparametric Models Outperform Parametric Models

- For knowledge-intensive tasks like QA, nonparametric models (w/ retrieved context) outperform parametric models (w/o context) by a large margin.
- For example, REALM (Guu et al. 2020), RAG (Lewis et al. 2020) on the NaturalQuestion datasets.

Close-book T5	34.5
REALM	40.4
RAG	44.5



End-to-end backpropagation