
CS11-747 Neural Networks for NLP

Generating Trees or Graphs
w/ Neural Networks

Graham Neubig

Site
https://phontron.com/class/nn4nlp2021/

https://phontron.com/class/nn4nlp2021/

Trees and Graphs in NLP
• Syntactic Structure:

I saw a man with a telescope

PRP VBD DT NN IN DT NN

NP NP
PP

VP
SI saw a man with a telescope

ROOT

• Underlying Semantics:

Sort my_list in descending order

Why Syntactic Structure?
• Regular models over word sequences do quite well

• But may not capture phenomena that inherently
require structure, such as long-distance agreement
e.g. Kuncoro et al (2018)

• Important for robustness, generalization

Why Semantic Structure?
Structured Meaning Representations

Abstract Syntax Trees

Natural Language Abstracted to
Actionable Meaning

Sort my_list in descending order

sorted(my_list,
reverse=True)

Example: Python code generation

?

• Executable programs

• Abstracted meaning representations

Parsing
• Predicting structured outputs from input sentence

• Transition-based models

• step through actions one-by-one until we have output

• like history-based model for POS tagging

• Graph-based models

• calculate probability of each edge/constituent, and perform
some sort of dynamic programming

• like linear CRF model for POS

Shift-reduce Dependency
Parsing

Why Dependencies?
• Dependencies are often good for semantic tasks,

as related words are close in the tree

• It is also possible to create labeled dependencies,
that explicitly show the relationship between words

det
dobj

det

I saw a girl with a telescope

prep

nsubj
pobj

Arc Standard Shift-Reduce Parsing
(Yamada & Matsumoto 2003, Nivre 2003)

• Process words one-by-one left-to-right
• Two data structures

• Queue: of unprocessed words
• Stack: of partially processed words

• At each point choose
• shift: move one word from queue to stack
• reduce left: top word on stack is head of second word
• reduce right: second word on stack is head of top word

• Learn how to choose each action with a classifier

Shift Reduce Example
Stack Buffer Stack Buffer

I saw a girlROOT

I saw a girlROOT
shift

I saw a girlROOT
shift

I saw a girlROOT

left

I saw a girlROOT

shift

I saw a girlROOT

shift

∅

I saw a girlROOT

left

∅

I saw a girlROOT

right

∅

I saw a girlROOT

right

∅

Classification for Shift-reduce
• Given a configuration

• Which action do we choose?

I saw a girlROOT

Stack Buffer

shift

I saw a girlROOT ∅ left

I saw a girlROOT

right

I saw a girlROOT

Making Classification
Decisions

• Extract features from the configuration

• what words are on the stack/buffer?

• what are their POS tags?

• what are their children?

• Feature combinations are important!

• Second word on stack is verb AND first is noun: “right” action is
likely

• Combination features used to be created manually (e.g. Zhang and
Nivre 2011), now we can use neural nets!

A Feed-forward Neural Model for
Shift-reduce Parsing

(Chen and Manning 2014)
• Extract non-combined features (embeddings)
• Let the neural net do the feature combination

Using Tree Structure in NNs:
Syntactic Composition

Why Tree Structure?

Recursive Neural Networks
(Socher et al. 2011)

I hate this movie

Tree-RNN

Tree-RNN

tree-rnn(h1,h2) = tanh(W [h1;h2] + b)

Can also parameterize by constituent type →
different composition behavior for NP, VP, etc.

Tree-RNN

Tree-structured LSTM
(Tai et al. 2015)

• Child Sum Tree-LSTM

• Parameters shared between all children (possibly based
on grammatical label, etc.)

• Forget gate value is different for each child → the
network can learn to “ignore” children (e.g. give less
weight to non-head nodes)

• N-ary Tree-LSTM

• Different parameters for each child, up to N (like the
Tree RNN)

Bi-LSTM Composition
(Dyer et al. 2015)

• Simply read in the constituents with a BiLSTM
• The model can learn its own composition function!

I hate this movie

BiLSTM

BiLSTM

BiLSTM

Let’s Try it Out!
tree-lstm.py

Encoding Parsing
Configurations w/ RNNs

• We don’t want to do feature engineering (why
leftmost and rightmost grandchildren only?!)

• Can we encode all the information about the parse
configuration with an RNN?

• Information we have: stack, buffer, past actions

Encoding Stack Configurations w/
RNNs

overhasty
an decision was

amod

REDUCE-LEFT(amod)

SHIFT

|{z} |{z}

|
{z

}
…

SH
IFT
RE
D-L

(am
od
)

…

made

S B

A

; ;

pt

root

TO
PTOP

TOP

REDUCE_L REDUCE_RSHIFT

(Slide credits: Chris Dyer)

Dynamic Programming for
Phrase Structure Parsing

Phrase Structure Parsing
• Models to calculate phrase structure

I saw a girl with a telescope

PRP VBD DT NN IN DT NN

NP NP
PP

VP
S

• Important insight: parsing is similar to tagging
• Tagging is search in a graph for the best path
• Parsing is search in a hyper-graph for the best tree

What is a Hyper-Graph?
• The “degree” of an edge is the number of children

• The degree of a hypergraph is the maximum
degree of its edges

• A graph is a hypergraph of degree 1!

Tree Candidates as Hypergraphs
• With edges in one tree or another

Weighted Hypergraphs
• Like graphs, can add weights to hypergraph edges
• Generally negative log probability of production

• Find the highest-scoring tree given a CFG grammar
• Create a hypergraph containing all candidates for a

binarized grammar, do hypergraph search

• Analogous to Viterbi algorithm, which is over
graphs, but over hyper-graphs

Hypergraph Search Example:
CKY Algorithm

Hypergraph Partition Function:
Inside-outside Algorithm

• Find the marginal probability of each span given a
CFG grammar

• Partition function us probability of the top span

• Same as CKY, except we logsumexp instead of max

• Analogous to forward-backward algorithm, but
forward-backward is over graphs, inside-outside is
over hyper-graphs

Neural CRF Parsing
(Durrett and Klein 2015)

• Predict score of each span using FFNN
• Do discrete structured inference using CKY, inside-outside

Span Labeling
(Stern et al. 2017)

• Simple idea: try to decide whether span is
constituent in tree or not

• Allows for various loss functions (local vs.
structured), inference algorithms (CKY, top down)

Self-Attentional Encoding+Structured
Inference (Kitaev et al. 2018)

• Self-attention based encoding

• Structured margin-based
inference

• Berkeley neural parser: https://
github.com/nikitakit/self-
attentive-parser

https://github.com/nikitakit/self-attentive-parser
https://github.com/nikitakit/self-attentive-parser
https://github.com/nikitakit/self-attentive-parser

Neural Models for Graph-
based Parsing

(First Order) Graph-based
Dependency Parsing

• Express sentence as fully connected directed graph
• Score each edge independently
• Find maximal spanning tree

this

is an

example

this

is an

example

-1
7 -4

-6-2 3
-2
-5

4 -2 -3 5

this

is an

example
4

7

5

Chu-Liu-Edmonds
(Chu and Liu 1965, Edmonds 1967)
• We have a graph and want to find its spanning tree

• Greedily select the best incoming edge to each node
(and subtract its score from all incoming edges)

• If there are cycles, select a cycle and contract it into a
single node

• Recursively call the algorithm on the graph with the
contracted node

• Expand the contracted node, deleting an edge
appropriately

BiLSTM Feature Extractors
(Kipperwasser and Goldberg 2016)

• Simpler and better accuracy than manual extraction

BiAffine Classifier
(Dozat and Manning 2017)

• Just optimize the likelihood of the parent, no structured training
• This is a local model, with global decoding using MST at the end

• Best results (with careful parameter tuning) on universal
dependencies parsing task

• Implementation: https://github.com/XuezheMax/NeuroNLP2

Learn specific representations
for head/dependent for each word

Calculate score of each arc

https://github.com/XuezheMax/NeuroNLP2

Global Training
• Previously: margin-based global training, local probabilistic

training
• What about global probabilistic models?

• Algorithms for calculating partition functions:
• Projective parsing: Eisner algorithm is a bottom-up CKY-

style algorithm for dependencies (Eisner et al. 1996)
• Non-projective parsing: Matrix-tree theorem can compute

marginals over directed graphs (Koo et al. 2007)
• Applied to neural models in Ma et al. (2017)

P (Y | X) =
e
P|Y |

j=1 S(yj |X,y1,...,yj�1)

P
Ỹ 2V ⇤ e

P|Ỹ |
j=1 S(ỹj |X,ỹ1,...,ỹj�1)

An Alternative:
Parse Reranking

An Alternative: Parse
Reranking

• You have a nice model, but it’s hard to implement a
dynamic programming decoding algorithm

• Try reranking!

• Generate with an easy-to-decode model

• Rescore with your proposed model

Examples of Reranking

• Inside-outside recursive neural networks (Le and
Zuidema 2014)

• Parsing as language modeling (Choe and Charniak
2016)

• Recurrent neural network grammars (Dyer et al.
2016)

A Word of Caution about
Reranking! (Fried et al. 2017)

• Your reranking model got SOTA results, great!

• But, it might be an effect of model combination (which we know
works very well)

• The model generating the parses prunes down the search
space

• The reranking model chooses the best parse only in that space!

Questions?

