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pneumonia

• Why: so that high-risk patients can be admitted, low risk 
patients can be treated as outpatients  

• AUC Neural networks   >  AUC Logistic Regression

• Rule based classifier  
 
HasAsthma(X)   —>   LowerRisk(X) 

more intensive care
Example from Caruana et al.
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Why interpretability?
• Debug models to uncover (and subsequently fix) issues, biases

• Engender trust among stakeholders

• Comply with regulations which mandate "right to explanations"

• Assess robustness: how will the model perform in the wild

• Provide recourse 

• Identify causal factors behind the predictions

• and more….
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The why question
Why did a model make a certain prediction for a given example?

f(x) = w1x1 + w2x2
Estimates Rent

House Area Population 
Density

2.0 0.01

• How the answer is computed? (mechanistic details)
• Relative importance of each feature?
• How did we end up with these parameters?

• What was the training objective?
• What was the data? Which city? Is it representative?
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Why neural translations are 
the right length?

 Shi et al. EMNLP 2016

Note: LSTMs can learn to count, whereas GRUs can not do 
unbounded counting (Weiss et al. ACL 2018)



Issues with probing

Probing Classifiers: Promises, Shortcomings, and Alternatives 
by Yonatan Belinkov  

• Did I interpret the representation or my probing classifier 
learn the task itself (Hewitt et al. 2019)


• Can only probe for properties you have supervision for


• Correlation doesn't imply causation


• and more…

https://arxiv.org/pdf/2102.12452.pdf


Summary: What is the model 
learning? 

 
https://boknilev.github.io/nlp-analysis-methods/table1.html

https://boknilev.github.io/nlp-analysis-methods/table1.html
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Explanation Techniques: gradient 
based importance scores

Figure from Ancona et al, ICLR 2018
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Explanation Technique: 
Attention

Entailment

Rocktäschel et al, 2015

BERTViz

Vig et al, 2019

Document classification

Yang et al, 2016
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Explanation Technique: 
Attention

1. Attention is only mildly correlated with other importance 
score techniques 

2. Counterfactual attention weights should yield different 
predictions, but they do not
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"Attention might be an explanation."

• Attention scores can provide a (plausible) explanation not the 
explanation.


• Attention is not explanation if you don’t need it


• Agree that attention is indeed manipulable,  
 
"this should provide pause to researchers who are looking to 
attention distributions for one true, faithful interpretation of the link 
their model has established between inputs and outputs."





• Manipulated models perform better than no-attention models


• Elucidate some workarounds (what happens behind the scenes)



Explanation Technique: 
Extractive Rationale Generation

Key idea: find minimal span(s) of 
text that can (by themselves) explain 
the prediction 

• Generator (x) outputs a probability 
distribution of each word being the 
rational 

• Encoder (x) predicts  the output using 
the snippet of text x

• Regularization to support contiguous 
and minimal spans



Explanation Technique: 
Influence Functions

• What would happen if a given training point didn’t exist?


• Retraining the network is prohibitively slow, hence 
approximate the effect using influence functions.

Most influential train images

Koh & Liang, ICML 2017
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Agreement among explanations

Overlap among the top-10% tokens selected by different 
explanation methods for sentiment analysis 
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Integrated Gradients

LIME

How to evaluate?
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RemOve And Retrain (ROAR) benchmark 
(Hooker et al. 2019)



Poerner et al, ACL 2018

Morphosyntactic Agreement
The link provided by the 
editor above encourages ….

How to evaluate?



Poerner et al, ACL 2018

Hybrid documents 
This is collected from 
Document 1. This text 
comes from Document 
2. …. This text is taken 
from Document n.

Morphosyntactic Agreement
The link provided by the 
editor above encourages ….

How to evaluate?
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Our proposal

Training Phase Test Phase

Input x' 
Predict f(x')

Input x' 
Predict f(x')

Some x, f(x) pairs

Some x, f(x),  triplese

Why not  
explanations?

Pruthi et al. 2020:  https://arxiv.org/pdf/2012.00893.pdf

https://arxiv.org/pdf/2012.00893.pdf


Summarizing two directions

• Input: a model M, a 
(linguistic) property P


• Output: extent to which M 
captures P


• Techniques: classification, 
regression


• Evaluation: implicit

• Input: a model M, a test 
example X


• Output: an explanation E 

• Techniques: varied …  

• Evaluation: complicated

What is the model learning? Explain the prediction



Discussion 

 
What are you interpretability needs?



Thank You! 


