CS11-747 Neural Networks for NLP Structured Prediction with Local Dependencies

Graham Neubig

Carnegie Mellon University Language Technologies Institute

https://phontron.com/class/nn4nlp2021/

With Slides by Xuezhe Ma

A Prediction Problem

Types of Prediction

• Two classes (**binary classification**)

I hate this movie ______ positive ______

• Multiple classes (multi-class classification)

hate this movie bad very good neutral bad very bad

• Exponential/infinite labels (structured prediction)

I hate this movie — PRP VBP DT NN

I hate this movie — *kono eiga ga kirai*

Why Call it "Structured" Prediction?

- Classes are to numerous to enumerate
- Need some sort of method to exploit the *problem structure* to learn efficiently
- Example of "structure", the following two outputs are similar:

PRP VBP DT NN PRP VBP VBP NN

Many Varieties of Structured Prediction!

Covered

Covered

today

already

· Models:

- RNN-based decoders
- Convolution/self attentional decoders
- CRFs w/ local factors
- Training algorithms:
 - Maximum likelihood w/ teacher forcing
 - Sequence level likelihood w/ dynamic programs
 - Reinforcement learning/minimum risk training
 - Structured perceptron, structured large margin
 - Sampling corruptions of data

An Example Structured Prediction Problem: Sequence Labeling

Sequence Labeling

- One tag for one word
- e.g. Part of speech tagging

• e.g. Named entity recognition

Why Model Interactions in Output?

• Consistency is important!

time	flies	like	an	arrow	
NN	VBZ	IN	DT	NN	(time moves similarly to an arrow)
NN	NNS	VB	DT	NN	("time flies" are fond of arrows)
VB	NNS	IN	DT	NN	(please measure the time of flies similarly to how an arrow would)
		↓ m	nax frec	quency	

NN NNS IN DT NN ("time flies" that are similar to an arrow)

Sequence Labeling as Independent Classification

• Structured prediction task, but not structured prediction model: multi-class classification

Sequence Labeling w/ BiLSTM

• Still not modeling output structure! Outputs are independent

Recurrent Decoder

Problems

Independent classification models:

- Strong independence assumptions
- No guarantee of valid or consistent structures

History-based/sequence-to-sequence models

- No independence assumptions
- Cannot calculate exactly! Require approximate search
- Exposure bias

Teacher Forcing and Exposure Bias

Teacher Forcing: The system is trained receiving only the correct inputs during training.

Exposure Bias: At inference time, it receives the previous predictions, which could be wrong!

 \rightarrow The model has never been "exposed" to these errors, and fails.

An Example of Exposure Bias

Models w/ Local Dependencies: Conditional Random Fields

Models w/ Local Dependencies

- Some independence assumptions on the output space, but not entirely independent (local dependencies)
- Exact and optimal decoding/training via dynamic programs

Conditional Random Fields! (CRFs)

Local Normalization vs. Global Normalization

• Locally normalized models: each decision made by the model has a probability that adds to one

$$P(Y \mid X) = \prod_{j=1}^{|Y|} \frac{e^{S(y_j \mid X, y_1, \dots, y_{j-1})}}{\sum_{\tilde{y}_j \in V} e^{S(\tilde{y}_j \mid X, y_1, \dots, y_{j-1})}}$$

• Globally normalized models (a.k.a. energy-based models): each sequence has a score, which is not normalized over a particular decision

$$P(Y \mid X) = \frac{e^{\sum_{j=1}^{|Y|} S(y_j \mid X, y_1, \dots, y_{j-1})}}{\sum_{\tilde{Y} \in V^*} e^{\sum_{j=1}^{|\tilde{Y}|} S(\tilde{y}_j \mid X, \tilde{y}_1, \dots, \tilde{y}_{j-1})}}$$

Conditional Random Fields

Potential Functions

• $\psi_i(y_{i-1}, y_i, X) = \exp(W^T T(y_{i-1}, y_i, X, i) + U^T S(y_i, X, i) + b_{y_{i-1}, y_i})$

"Transition"

y2

"Emission"

уз

Уn

• Using neural features in DNN:

$$\psi_{i}(y_{i-1}, y_{i}, X) = \exp\left(W_{y_{i-1}, y_{i}}^{T} F(X, i) + U_{y_{i}}^{T} F(X, i) + b_{y_{i-1}, y_{i}}\right)$$

- Number of parameters: $O(|Y|^2 d_F)$
- Simpler version:

$$\psi_i(y_{i-1}, y_i, X) = \exp(W_{y_{i-1}, y_i} + U_{y_i}^T F(X, i) + b)$$

• Number of parameters: $O(|Y|^2 + |Y|d_F)$

BiLSTM-CRF for Sequence Labeling

Training & Decoding of CRF: Viterbi/Forward Backward Algorithm

CRF Training & Decoding

•
$$P(Y|X) = \frac{\prod_{i=1}^{L} \psi_i(y_{i-1}, y_i, X)}{\sum_{Y'} \prod_{i=1}^{L} \psi_i(y'_{i-1}, y'_i, X)} = \frac{\prod_{i=1}^{L} \psi_i(y_{i-1}, y_i, X)}{Z(X)}$$

Easy to compute Hard to compute

• Training: computing the partition function Z(X)

$$Z(X) = \sum_{Y} \prod_{i=1}^{L} \psi_i(y_{i-1}, y_i, X)$$

• Decoding

$$y^* = argmax_Y P(Y|X)$$

Go through the output space of Y which grows exponentially with the length of the input sequence.

Interactions

$$Z(X) = \sum_{Y} \prod_{i=1}^{L} \psi_{i}(y_{i-1}, y_{i}, X)$$

- Each label depends on the input, and the nearby labels
- But given adjacent labels, others do not matter
- If we knew the score of every sequence y₁, ..., y_{n-1}, we could compute easily the score of sequence y₁, ..., y_{n-1}, y_n
- So we really only need to know the score of all the sequences ending in each y_{n-1}
- Think of that as some "precalculation" that happens before we think about \boldsymbol{y}_n

Forward Calculation: Initial Part

 First, calculate transition from <S> and emission of the first word for every POS

Forward Calculation Middle Parts

• For middle words, calculate the scores for all possible previous POS tags

Forward Calculation: Final Part

· Finish up the sentence with the sentence final symbol

Revisiting the Partition Function

•
$$P(Y|X) = \frac{\prod_{i=1}^{L} \psi_i(y_{i-1}, y_i, X)}{\sum_{Y'} \prod_{i=1}^{L} \psi_i(y_{i-1}, y_i, X)} = \frac{\prod_{i=1}^{L} \psi_i(y_{i-1}, y_i, X)}{Z(X)}$$

- **Cumulative score** of "" at position L+1 now is the sum of all paths, equal to partition function Z(X)!
- Subtract this from (log) score of true path to calculate global log likelihood to use as loss function.
- ("backward" step in traditional CRFs handled by our neural net/ autograd toolkit.)

Argmax Search

• Forward step: Instead of log_sum_exp, use "max", maintain back-pointers

• Backward step: Re-trace back-pointers from end to beginning

Case Study BiLSTM-CNN-CRF for Sequence Labeling

Case Study: BiLSTM-CNN-CRF for Sequence Labeling (Ma et al, 2016)

- Goal: Build end-to-end neural model for sequence labeling, requiring no feature engineering and data pre-processing.
- Two levels of representations
 - Character-level representation: CNN
 - Word-level representation: Bi-directional LSTM

CNN for Character-level representation

 CNN to extract morphological information such as prefix or suffix of a word

Bi-LSTM-CNN-CRF

- Bi-LSTM to model wordlevel information.
- CRF is on top of Bi-LSTM to consider the corelation between labels.

Training Details

- Optimization Algorithm:
 - SGD with momentum (0.9)
 - Learning rate decays with rate 0.05 after each epoch.
- Dropout Training:
 - Applying dropout to regularize the model with fixed dropout rate 0.5
- Parameter Initialization:
 - Parameters: Glorot and Bengio (2010)
 - Word Embedding: Stanford's GloVe 100-dimentional embeddings
 - Character Embedding: uniformly sampled from $\left[-\sqrt{\frac{3}{dim}}, +\sqrt{\frac{3}{dim}}\right]$, where dim = 30

Experiments

	POS		NER						
	Dev	Test	Dev			Test			
Model	Acc.	Acc.	Prec.	Recall	F1	Prec.	Recall	F1	
BRNN	96.56	96.76	92.04	89.13	90.56	87.05	83.88	85.44	
BLSTM	96.88	96.93	92.31	90.85	91.57	87.77	86.23	87.00	
BLSTM-CNN	97.34	97.33	92.52	93.64	93.07	88.53	90.21	89.36	
BLSTM-CNN-CRF	97.46	97.55	94.85	94.63	94.74	91.35	91.06	91.21	

Generalized CRFs

Data Structures to Marginalize Over

Fully Connected Lattice/Trellis

(this is what a linear-chain CRF looks like)

Hyper-graphs

(for example, multiple tree candidates)

Sparsely Connected Lattice/Graph

(e.g. speech recognition lattice, trees)

Fully Connected Graph

(e.g. full seq2seq models, dynamic programming not possible)

Generalized Dynamic Programming Models

- **Decomposition Structure:** What structure to use, and thus also what dynamic programming to perform?
- Featurization: How do we calculate local scores?
- Score Combination: How do we combine together scores? e.g. log_sum_exp, max (concept of "semi-ring")
- Example: pytorch-struct

https://github.com/harvardnlp/ pytorch-struct

Compute marginals

show(dist.marginals[0])

Compute argmax show(dist.argmax.detach()[0])

Questions?