
CS11-747 Neural Networks for NLP


Debugging Neural 
Networks for NLP

Graham Neubig

Site
https://phontron.com/class/nn4nlp2021/

https://phontron.com/class/nn4nlp2021/


In Neural Networks,

Debugging is Paramount!

• Models are often complicated and opaque


• Everything is a hyperparameter (network size, 
model variations, batch size/strategy, optimizer/
learning rate)


• Non-convex, stochastic optimization has no 
guarantee of decreasing/converging loss



Understanding Your 
Problem



A Typical Situation

• You’ve implemented a nice model


• You’ve looked at the code, and it looks OK


• Your accuracy on the test set is bad


• What do I do?



Possible Causes
• Training time problems


• Lack of model capacity

• Inability to train model properly

• Training time bug


• Decoding time bugs

• Disconnect between test and decoding

• Failure of search algorithm


• Overfitting

• Mismatch between optimized function and eval

Don't debug all at once! Start top and work down.



Debugging at Training Time



Identifying Training Time 
Problems

• Look at the loss function calculated on the 
training set


• Is the loss function going down?


• Is it going down basically to zero if you run 
training long enough (e.g. 20-30 epochs)?


• If not, does it go down to zero if you use very 
small datasets?



Is My Model Too Weak?
• Larger models tend to perform better, esp. when pre-trained 

(e.g. Raffel et al. 2020)

• Larger models can learn with fewer steps (Kaplan et al. 2020, Li et al. 2020)



Trouble w/ Optimization
• If increasing model size doesn’t help, you may have 

an optimization problem


• Possible causes:


• Bad optimizer


• Bad learning rate


• Bad initialization


• Bad minibatching strategy



Reminder: Optimizers
• SGD: take a step in the direction of the gradient


• SGD with Momentum: Remember gradients from past time 
steps to prevent sudden changes


• Adagrad: Adapt the learning rate to reduce learning rate for 
frequently updated parameters (as measured by the variance of 
the gradient)


• Adam: Like Adagrad, but keeps a running average of 
momentum and gradient variance


• Many others: RMSProp, Adadelta, etc. 
(See Ruder 2016 reference for more details)



Learning Rate
• Learning rate is an important parameter


• Too low: will not learn or learn vey slowly


• Too high: will learn for a while, then fluctuate and 
diverge


• Common strategy: start from an initial learning rate 
then gradually decrease


• Note: need a different learning rate for each optimizer! 
(SGD default is 0.1, Adam 0.001)



Initialization
• Neural nets are sensitive to initialization, which results in 

different sized gradients

• Standard initialization methods:


• Gaussian initialization: initialize with a zero-mean 
Gaussian distribution


• Uniform range initialization: simply initialize uniformly 
within a range


• Glorot initialization, He initialization: initialize in a 
uniform manner, where the range is specified 
according to net size


• Latter is common/default, but read prior work carefully



Be Careful of Multi-layer 
Models

• Extra layers can help, but can also hurt if you’re not careful due 
to vanishing gradients


• Solutions:

Residual Connections (He et al. 2015) Highway Networks (Srivastava et al. 2015)



Debugging at Test Time



Training/Decoding 
Disconnects

• Usually your loss calculation and prediction will be 
implemented in different functions


• Especially true for structured prediction models (e.g. 
encoder-decoders)


• See enc_dec.py example from this class, which has 
calc_loss() and generate() functions 


• Like all software engineering: duplicated code is a source 
of bugs!


• Also, usually loss calculation is minibatched, generation not.



Debugging Minibatching
• Debugging mini-batched loss calculation


• Calculate loss with large batch size (e.g. 32)


• Calculate loss for each sentence individually 
and sum


• The values should be the same (modulo 
numerical precision)


• Create a unit test that tests this!



Debugging Structured 
Generation

• Your decoding code should get the same score as loss 
calculation


• Test this:


• Call decoding function, to generate an output, and 
keep track of its score


• Call loss function on the generated output


• The score of the two functions should be the same


• Create a unit test doing this!



Beam Search
• Instead of picking one high-probability word, 

maintain several paths

• More in a later class



Debugging Search

• As you make search better, the model score should 
get better (almost all the time)


• Run search with varying beam sizes and make sure 
you get a better overall model score with larger 
sizes


• Create a unit test testing this!



Look At Your Data!
• Decoding problems can often be detected by 

looking at outputs and realizing something is wrong


• e.g. The first word of the sentence is dropped 
every time 
> went to the store yesterday 
> bought a dog


• e.g. our system was <unk>ing University of 
Nebraska at Kearney



Mismatch b/t Optimized 
Function and Evaluation Metric



Loss Function, 
Evaluation Metric

• It is very common to optimize for maximum 
likelihood for training


• But even though likelihood is getting better, 
accuracy can get worse



Example w/ Classification
• Loss and accuracy are de-correlated (see dev)

• Why? Model gets more confident about its mistakes.



Managing Loss Function/
Eval Metric Differences

• Most principled way: use structured prediction 
techniques to be discussed in future classes


• Structured max-margin training


• Minimum risk training


• Reinforcement learning


• Reward augmented maximum likelihood



A Simple Method:

Early Stopping w/ Eval Metric

stop here

not here



Final Words



Reproducing Previous Work

• Reproducing previous work is hard because 
everything is a hyper-parameter


• If code is released, find and reduce the differences 
one by one


• If code is not released, try your best


• Feel free to contact authors about details, they will 
usually respond!



Questions?


