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INn Neural Networks,
Debugging Is Paramount!

Models are often complicated and opaque

Everything is a hyperparameter (network size,
model variations, batch size/strategy, optimizer/
learning rate)

Non-convex, stochastic optimization has no
guarantee of decreasing/converging loss



Understanding Your
Problem



A Typical Situation

* You've implemented a nice model
* You've looked at the code, and it looks OK
e Your accuracy on the test set is bad

- Whatdo | do?



~ Possible Causes

- Training time problems

o Lack of model capacity

* |nability to train model properly
e Jraining time bug

- Decoding time bugs

 Disconnect between test and decoding
» Failure of search algorithm

- Overfitting
- Mismatch between optimized function and eval




Debugging at Training Time



|[dentitying Training Time
Problems

e | ook at the loss function calculated on the
training set

* |s the loss function going down?

* |s it going down basically to zero if you run
training long enough (e.g. 20-30 epochs)?

e |f not, does it go down to zero it you use very
small datasets”?



s My Model Too Weak"

e [arger models tend to perform better, esp. when pre-trained
(e.g. Raffel et al. 2020)

GLUE CoLA SST-2 MRPC MRPC STS-B STS-B
Model Average Matthew’s Accuracy F1 Accuracy Pearson Spearman
Previous best ~ 89.4° 69.2° 97.1 93.6" 91.5° 92.7° 92.3°
T5-Small 77.4 41.0 91.8 89.7 86.6 85.6 85.0
T5-Base 82.7 51.1 95.2 90.7 87.5 89.4 88.6
T5-Large 86.4 61.2 96.3 92.4 89.9 89.9 89.2
T5-3B 88.5 67.1 97.4 92.5 90.0 90.6 89.8
T5-11B 90.3 71.6 97.5 92.8 90.4 93.1 92.8

* Larger models can learn with fewer steps (Kaplan et al. 2020, Li et al. 2020)

Larger models require fewer samples The optimal model size grows smoothly
to reach the same performance with the loss target and compute budget
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Trouble w/ Optimization

* |f increasing model size doesn’t help, you may have
an optimization problem

- Possible causes:
 Bad optimizer
e Bad learning rate
e Bad initialization

 Bad minibatching strategy



Reminder: Optimizers

SGD: take a step in the direction of the gradient

SGD with Momentum: Remember gradients from past time
steps to prevent sudden changes

Adagrad: Adapt the learning rate to reduce learning rate for
frequently updated parameters (as measured by the variance of
the gradient)

Adam: Like Adagrad, but keeps a running average of
momentum and gradient variance

Many others: RMSProp, Adadelta, etc.
(See Ruder 2016 reference for more details)



| earning Rate

* Learning rate is an important parameter
* Joo low: will not learn or learn vey slowly

e Joo high: will learn for a while, then fluctuate and
diverge

« Common strategy: start from an initial learning rate
then gradually decrease

* Note: need a different learning rate for each optimizer!
(SGD default is 0.1, Adam 0.001)



INitialization

e Neural nets are sensitive to initialization, which results Iin
different sized gradients

e Standard initialization methods:

« Gaussian initialization: initialize with a zero-mean
Gaussian distribution

 Uniform range initialization: simply initialize unitormly
within a range

 Glorot initialization, He initialization: initialize in a
uniform manner, where the range is specified
according to net size

o [atter is common/detault, but read prior work carefully



Be Careful of Multi-layer
Models

e Extra layers can help, but can also hurt if you're not careful due
to vanishing gradients

e Solutions:

Residual Connections (He et al. 2015) Highway Networks (Srivastava et al. 2015)

y=H(x,Wx)T(x,Wr)+x-(1-T(x,Wr))

weight layer
F(x) | relu

weight layer

X

identity




Debugging at lest [ime



Training/Decoding
Disconnects

Usually your loss calculation and prediction will be
implemented in different functions

Especially true for structured prediction models (e.g.
encoder-decoders)

* See enc dec.py example from this class, which has
calc loss () and generate () functions

Like all software engineering: duplicated code Is a source
of bugs!

Also, usually loss calculation is minibatched, generation not.



Debugging Minibatching

* Debugging mini-batched loss calculation
* Calculate loss with large batch size (e.g. 32)

e Calculate loss for each sentence individually
and sum

* The values should be the same (modulo
numerical precision)

e Create a unit test that tests this!



Debugging Structured
Generation

e Your decoding code should get the same score as l0ss
calculation

e Jest this;

» Call decoding function, to generate an output, and
keep track of its score

» Call loss function on the generated output
e The score of the two functions should be the same

* Create a unit test doing this!



Beam Search

* |nstead of picking one high-probability word,
maintain several paths
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Debugging Search

* As you make search better, the model score should
get better (almost all the time)

* Run search with varying beam sizes and make sure
you get a better overall model score with larger
Sizes

e Create a unit test testing this!



| ook At Your Data!

 Decoding problems can often be detected by
looking at outputs and realizing something Iis wrong

* e.g. The first word of the sentence is dropped
every time
> went to the store yesterday
> bought a dog

e e.g. our system was <unk>ing University of
Nebraska at Kearney



Mismatch b/t Optimized
Function and Evaluation Metric



0SS Function,
Evaluation Metric

e |tis very common to optimize for maximum
ikelihood for training

* But even though likelihood is getting better,
accuracy can get worse



Example w/ Classification

* |L0ss and accuracy are de-correlated (see dev)

Loss Accurac y
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 Why”? Model gets more confident about its mistakes.
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Managing Loss Function/
Eval Metric Differences

 Most principled way: use structured prediction
techniques to be discussed in future classes

e Structured max-margin training
 Minimum risk training
* Reinforcement learning

 Reward augmented maximum likelihood



A Simple Method:
Early Stopping w/ Eval Metric

Loss Accuracy
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Final Words



Reproducing Previous Work

* Reproducing previous work Is hard because
everything is a hyper-parameter

e |[f code is released, find and reduce the differences
one by one

* |f code is not released, try your best

* Feel free to contact authors about details, they will
usually respond!



Questions?



