CS11-747 Neural Networks for NLP Debugging Neural Networks for NLP

Graham Neubig

Carnegie Mellon University

Language Technologies Institute

Site <u>https://phontron.com/class/nn4nlp2021/</u>

In Neural Networks, Debugging is Paramount!

- Models are often complicated and opaque
- Everything is a hyperparameter (network size, model variations, batch size/strategy, optimizer/ learning rate)
- Non-convex, stochastic optimization has no guarantee of decreasing/converging loss

Understanding Your Problem

A Typical Situation

- You've implemented a nice model
- You've looked at the code, and it looks OK
- Your accuracy on the test set is bad
- What do I do?

Possible Causes

Training time problems

- Lack of model capacity
- Inability to train model properly
- Training time bug
- Decoding time bugs
 - Disconnect between test and decoding
 - Failure of search algorithm
- Overfitting
- Mismatch between optimized function and eval

Don't debug all at once! Start top and work down.

Debugging at Training Time

Identifying Training Time Problems

- Look at the loss function calculated on the training set
 - Is the loss function going down?
 - Is it going down basically to zero if you run training long enough (e.g. 20-30 epochs)?
 - If not, does it go down to zero if you use very small datasets?

Is My Model Too Weak?

 Larger models tend to perform better, esp. when pre-trained (e.g. Raffel et al. 2020)

Model	GLUE Average	CoLA Matthew's	SST-2 Accuracy	$\begin{array}{c} \mathrm{MRPC} \\ \mathrm{F1} \end{array}$	MRPC Accuracy	STS-B Pearson	STS-B Spearman
Previous best	89.4^{a}	69.2^b	97.1^{a}	93.6^{b}	91.5^{b}	92.7^{b}	92.3^b
T5-Small	77.4	41.0	91.8	89.7	86.6	85.6	85.0
T5-Base	82.7	51.1	95.2	90.7	87.5	89.4	88.6
T5-Large	86.4	61.2	96.3	92.4	89.9	89.9	89.2
T5-3B	88.5	67.1	97.4	92.5	90.0	90.6	89.8
T5-11B	90.3	71.6	97.5	92.8	90.4	93.1	92 .8

• Larger models can learn with fewer steps (Kaplan et al. 2020, Li et al. 2020)

Trouble w/ Optimization

- If increasing model size doesn't help, you may have an optimization problem
- Possible causes:
 - Bad optimizer
 - Bad learning rate
 - Bad initialization
 - Bad minibatching strategy

Reminder: Optimizers

- **SGD:** take a step in the direction of the gradient
- **SGD with Momentum:** Remember gradients from past time steps to prevent sudden changes
- Adagrad: Adapt the learning rate to reduce learning rate for frequently updated parameters (as measured by the variance of the gradient)
- Adam: Like Adagrad, but keeps a running average of momentum and gradient variance
- **Many others:** RMSProp, Adadelta, etc. (See Ruder 2016 reference for more details)

Learning Rate

- Learning rate is an important parameter
 - Too low: will not learn or learn vey slowly
 - Too high: will learn for a while, then fluctuate and diverge
- **Common strategy:** start from an initial learning rate then gradually decrease
- **Note:** need a different learning rate for each optimizer! (SGD default is 0.1, Adam 0.001)

Initialization

- Neural nets are sensitive to initialization, which results in different sized gradients
- Standard initialization methods:
 - Gaussian initialization: initialize with a zero-mean Gaussian distribution
 - **Uniform range initialization:** simply initialize uniformly within a range
 - Glorot initialization, He initialization: initialize in a uniform manner, where the range is specified according to net size
- Latter is common/default, but read prior work carefully

Be Careful of Multi-layer Models

- Extra layers can help, but can also hurt if you're not careful due to vanishing gradients
- Solutions:

Residual Connections (He et al. 2015)

$$\mathbf{y} = H(\mathbf{x}, \mathbf{W}_{\mathbf{H}}) \cdot T(\mathbf{x}, \mathbf{W}_{\mathbf{T}}) + \mathbf{x} \cdot (1 - T(\mathbf{x}, \mathbf{W}_{\mathbf{T}}))$$

Debugging at Test Time

Training/Decoding Disconnects

- Usually your loss calculation and prediction will be implemented in different functions
- Especially true for structured prediction models (e.g. encoder-decoders)
 - See enc_dec.py example from this class, which has calc_loss() and generate() functions
- Like all software engineering: duplicated code is a source of bugs!
- Also, usually loss calculation is minibatched, generation not.

Debugging Minibatching

- Debugging mini-batched loss calculation
 - Calculate loss with large batch size (e.g. 32)
 - Calculate loss for each sentence individually and sum
 - The values should be the same (modulo numerical precision)
- Create a unit test that tests this!

Debugging Structured Generation

- Your decoding code should get the same score as loss calculation
- Test this:
 - Call **decoding function**, to generate an output, and keep track of its score
 - Call loss function on the generated output
 - The score of the two functions should be the same
- Create a unit test doing this!

Beam Search

 Instead of picking one high-probability word, maintain several paths

More in a later class

Debugging Search

- As you make search better, the model score should get better (almost all the time)
- Run search with varying beam sizes and make sure you get a better overall model score with larger sizes
- Create a unit test testing this!

Look At Your Data!

- Decoding problems can often be detected by looking at outputs and realizing something is wrong
- e.g. The first word of the sentence is dropped every time
 - > went to the store yesterday
 - > bought a dog
- e.g. our system was <unk>ing University of Nebraska at Kearney

Mismatch b/t Optimized Function and Evaluation Metric

Loss Function, Evaluation Metric

- It is very common to optimize for maximum likelihood for training
- But even though likelihood is getting better, accuracy can get worse

Example w/ Classification

Loss and accuracy are de-correlated (see dev)

• Why? Model gets more confident about its mistakes.

Managing Loss Function/ Eval Metric Differences

- Most principled way: use structured prediction techniques to be discussed in future classes
 - Structured max-margin training
 - Minimum risk training
 - Reinforcement learning
 - Reward augmented maximum likelihood

A Simple Method: Early Stopping w/ Eval Metric

Final Words

Reproducing Previous Work

- Reproducing previous work is hard because everything is a hyper-parameter
- If code is released, find and reduce the differences one by one
- If code is not released, try your best
- Feel free to contact authors about details, they will usually respond!

Questions?