CS11-747 Neural Networks for NLP Efficiency Tricks for Neural Nets

Graham Neubig

Carnegie Mellon University

Language Technologies Institute

Site <u>https://phontron.com/class/nn4nlp2021/</u>

Glamorous Life of an Al Scientist **Perception**

ALEXANDRE ROBICQUET CHERCHEUR EN INTELLIGENCE PTIFICIELLE LE NOUVEAU PARFUM MASCULI WESSAINTAURENT

Photo Credit: Antoine Miech @ Twitter

Reality

Waiting....

Why are Neural Networks Slow and What Can we Do?

- GPUs love big operations, but hate doing lots of them
 - → Reduce the number of operations through optimized implementations or batching
- Our networks are big, our data sets are big
 - → Use parallelism to process many data at once
- Big operations, especially for softmaxes over large vocabularies
 - → Approximate operations or use GPUs

GPU Training Tricks

GPUs vs. CPUs

CPU, like a motorcycle

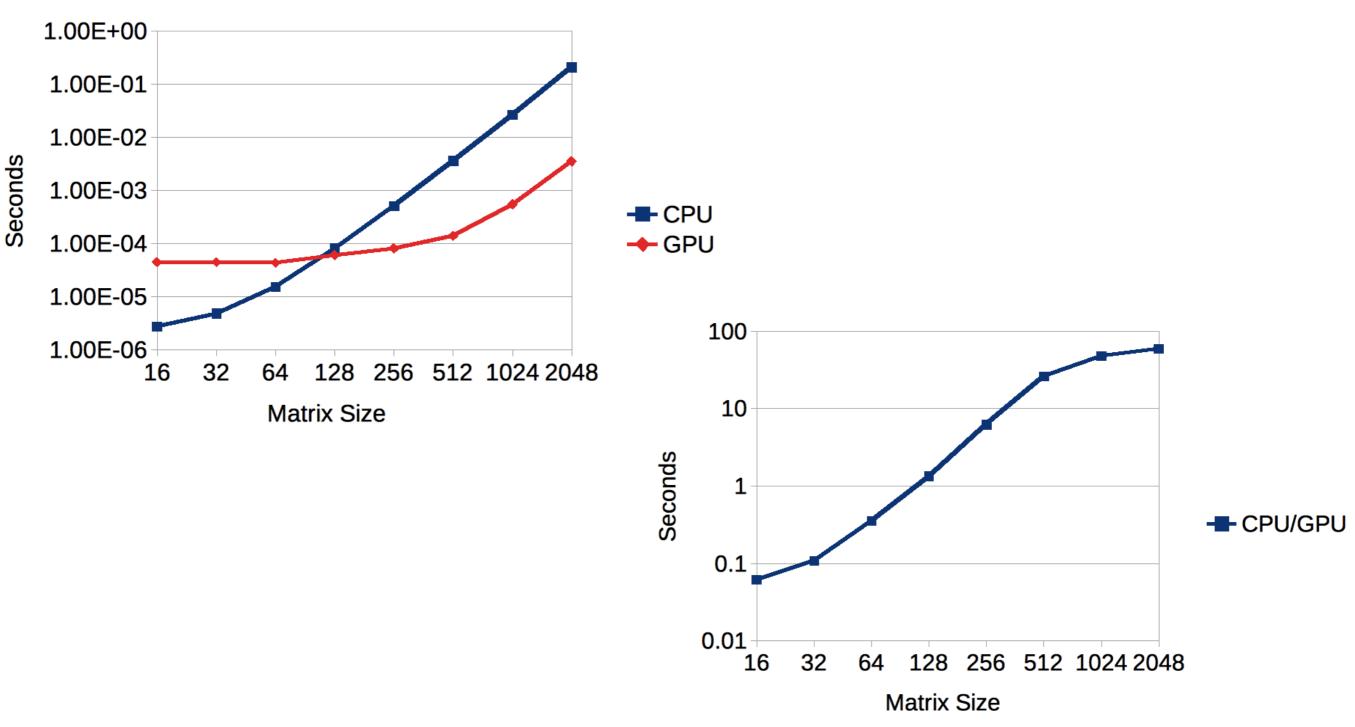
Quick to start, top speed not shabby

GPU, like an airplane

Takes forever to get off the ground, but super-fast once flying

A Simple Example

How long does a matrix-matrix multiply take?



Practically

- Use CPU for prototyping, it's often and you can run many more experiments
- For **many applications, CPU is just as fast** or faster than GPU: NLP analysis tasks with small or complicated data/networks
- You see **big gains on GPU when** you have:
 - Very big networks (or softmaxes with no approximation)
 - Do mini-batching
 - Optimize things properly

Speed Trick 1: Don't Repeat Operations

 Something that you can do once at the beginning of the sentence, don't do it for every word!

Bad

for x in words_in_sentence:
 vals.append(W * c + x)

<u>Good</u>

 $W_C = W \star c$

for x in words_in_sentence:

vals.append($W_c + x$)

Speed Trick 2: Reduce # of Operations

• e.g. can you combine multiple matrix-vector multiplies into a single matrix-matrix multiply? Do so!

Bad

for x in words_in_sentence:
 vals.append(W * x)
val = dy.concatenate(vals)

Good

X = dy.concatenate_cols(words_in_sentence)
val = W * X

Speed Trick 3: Reduce CPU-GPU Data Movement

- Try to **avoid memory moves** between CPU and GPU.
- When you do move memory, try to do it as early as possible (GPU operations are asynchronous)

Bad

for x in words_in_sentence:

input data for x

do processing

<u>Good</u>

input data for whole sentence
for x in words_in_sentence:
 # do processing

What About Memory?

- Many GPUs only have up to 12GB, so memory is a major issue
- Minimize unnecessary operations, especially ones over big pieces of data
- If absolutely necessary, **use multiple GPUs** (but try to minimize memory movement)

Let's Try It!

slow-impl.py

Parallelism in Computation Graphs

Three Types of Parallelism

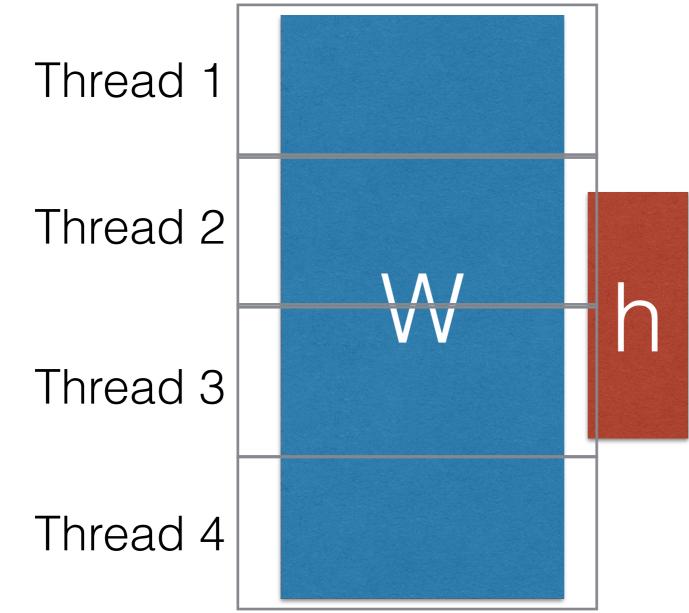
- Within-operation parallelism
- Operation-wise parallelism

• Example-wise parallelism

Model parallelism

} Data parallelism

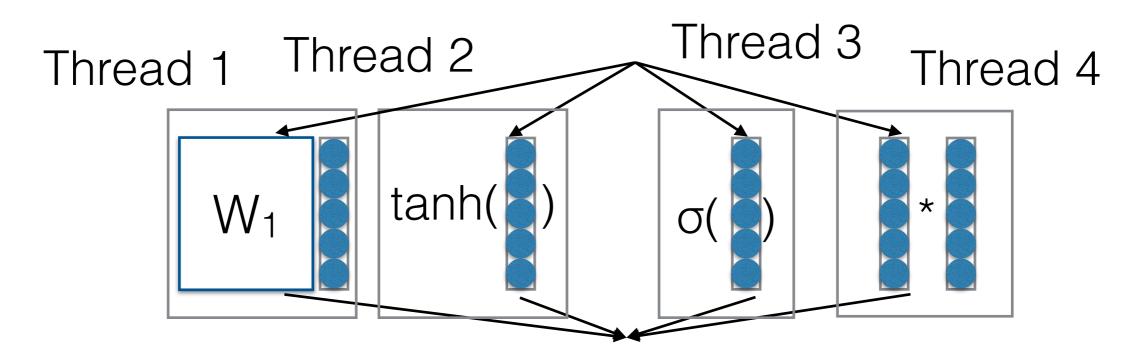
Within-operation Parallelism



- GPUs (and TPUs) excel at this!
- Libraries like MKL implement this on CPU, but gains less striking.
- Thread management overhead is counter-productive when operations small.

Operation-wise Parallelism

Split each operation into a different thread, or different GPU device



• **Difficulty:** How do we minimize dependencies and memory movement?

Example-wise Parallelism

• Process each training example in a different thread or machine

this is an example

this is another example

this is the best example

no, i'm the best example

Thread 1 Thread 2 Thread 3

Thread 4

• **Difficulty:** How do we implement, accumulate gradients, keep parameters fresh across machines?

Implementing Data Parallelism

 Many modern libraries make data parallelism relatively easy, e.g. PyTorch DistributedDataParallel

```
def demo_basic(rank, world_size):
    setup(rank, world_size)
```

```
# setup devices for this process, rank 1 uses GPUs [0, 1, 2, 3] and
# rank 2 uses GPUs [4, 5, 6, 7].
n = torch.cuda.device_count() // world_size
device_ids = list(range(rank * n, (rank + 1) * n))
```

```
# create model and move it to device_ids[0]
model = ToyModel().to(device_ids[0])
# output_device defaults to device_ids[0]
ddp_model = DDP(model, device_ids=device_ids)
```

```
loss_fn = nn.MSELoss()
optimizer = optim.SGD(ddp_model.parameters(), lr=0.001)
```

```
optimizer.zero_grad()
outputs = ddp_model(torch.randn(20, 10))
labels = torch.randn(20, 5).to(device_ids[0])
loss_fn(outputs, labels).backward()
optimizer.step()
```

```
def run_demo(demo_fn, world_size):
    mp.spawn(demo_fn,
        args=(world_size,),
        nprocs=world_size,
        join=True)
```

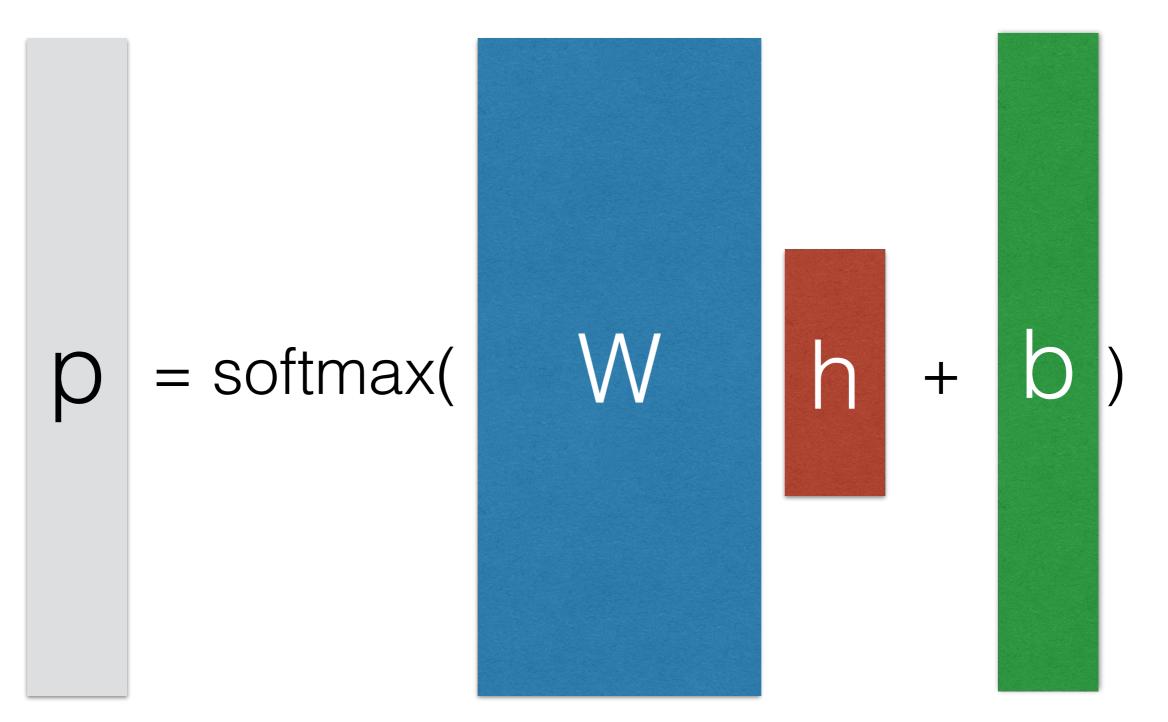
```
cleanup()
```

Negative Sampling

Computation Across Large Vocabularies

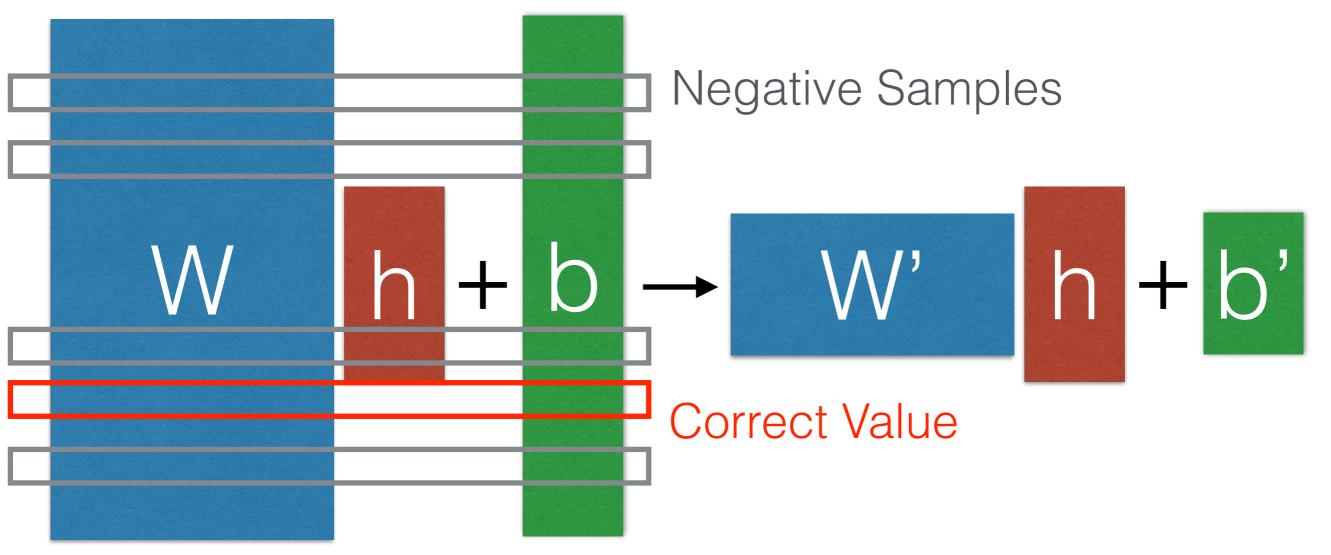
- All the words in the English language (e.g. language modeling)
- All of the examples in a database (e.g. search or retrieval)
- Too many to calculate each every time!

A Visual Example of the Softmax



Negative Sampling

Calculate the denominator over a subset



Sample negative examples according to distribution q

Softmax

Convert scores into probabilities by taking the exponent and normalizing (softmax)

$$P(x_i \mid \boldsymbol{h}_i) = \frac{e^{s(x_i \mid \boldsymbol{h}_i)}}{\sum_{\tilde{x}_i} e^{s(\tilde{x}_i \mid \boldsymbol{h}_i)}}$$

This is expensive, would like to approximate

$$Z(\boldsymbol{h}_i) = \sum_{\tilde{x}_i} e^{s(\tilde{x}_i | \boldsymbol{h}_i)}$$

Importance Sampling (Bengio and Senecal 2003)

- Sampling is a way to approximate a distribution we cannot calculate exactly
- Basic idea: sample from arbitrary distribution Q (uniform/unigram), then re-weight with e^s/Q to approximate denominator

$$Z(\boldsymbol{h}_i) \approx \frac{1}{N} \sum_{\tilde{x}_i \sim Q(\cdot | \boldsymbol{h}_i)} \frac{e^{s(\tilde{x}_i | \boldsymbol{h}_i)}}{Q(\tilde{x}_i | \boldsymbol{h}_i)}$$

• This is a biased estimator (esp. when N is small)

Noise Contrastive Estimation (Mnih & Teh 2012)

• **Basic idea:** Try to guess whether it is a true sample or one of N random noise samples. Prob. of true:

$$P(d = 1 \mid x_i, \boldsymbol{h}_i) = \frac{P(x_i \mid \boldsymbol{h}_i)}{P(x_i \mid \boldsymbol{h}_i) + N * Q(x_i \mid \boldsymbol{h}_i)}$$

- Optimize the probability of guessing correctly: $\mathbb{E}_P[\log P(d=1 \mid x_i, \boldsymbol{h}_i)] + N * \mathbb{E}_Q[\log P(d=0 \mid x_i, \boldsymbol{h}_i)]$
- During training, approx. with unnormalized prob.

$$\tilde{P}(x_i \mid \boldsymbol{h}_i) = P(x_i \mid \boldsymbol{h}_i) / e^{c_{\boldsymbol{h}_i}} \quad (\text{set } c_{\boldsymbol{h}_i} = 0)$$

Simple Negative Sampling (Mikolov 2012)

- Used in word2vec
- Basically, sample one positive k negative examples, calculate the log probabilities

$$P(d = 1 \mid x_i, \boldsymbol{h}_i) = \frac{P(x_i \mid \boldsymbol{h}_i)}{P(x_i \mid \boldsymbol{h}_i) + 1}$$

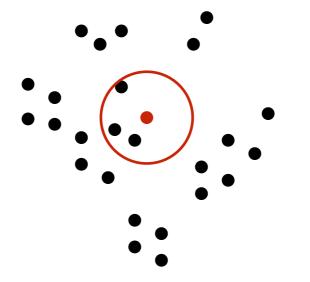
 Similar to NCE, but biased when k != |V| or Q is not uniform

Mini-batch Based Negative Sampling

- Creating and arranging memory on the is expensive, especially on the GPU
- Simple solution: select the same negative samples for each minibatch
- (See Zoph et al. 2015 for details)

Hard Negative Mining

Select the top n hardest examples

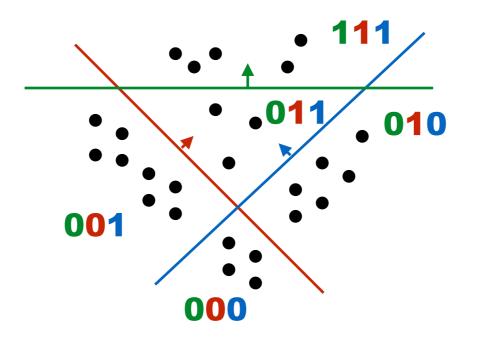


 Not a probabilistic objective, but well-suited to margin-based loss functions

 $\operatorname{marginloss}(x, y, \hat{y}) = \max(0, 1 + s(\hat{y}|x) - s(y|x))$

Efficient Maximum Inner Product Search

- To do prediction over large spaces, or hard negative mining, need to find best example over large space efficiently
- Example: locality sensitive hashing



 Efficient implementations such as faiss and scann <u>https://github.com/facebookresearch/faiss</u> <u>https://github.com/google-research/google-research/tree/master/scann</u>

Let's Try it Out!

wordemb-negativesampling.py

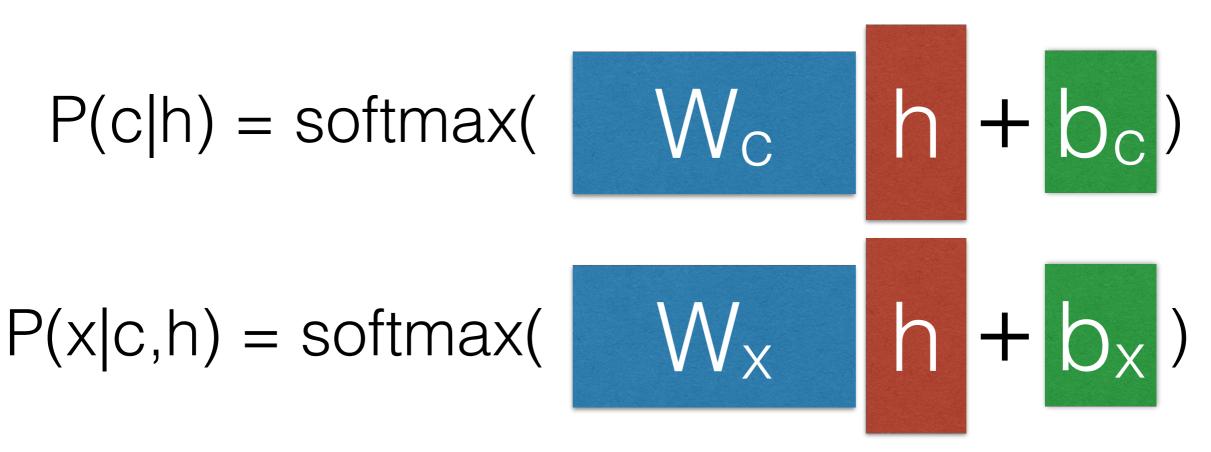
More Efficient Predictors

Structure-based Approximations

- We can also change the structure of the softmax to be more efficiently calculable
 - Class-based softmax
 - Hierarchical softmax
 - Binary codes
 - Embedding Prediction

Class-based Softmax (Goodman 2001)

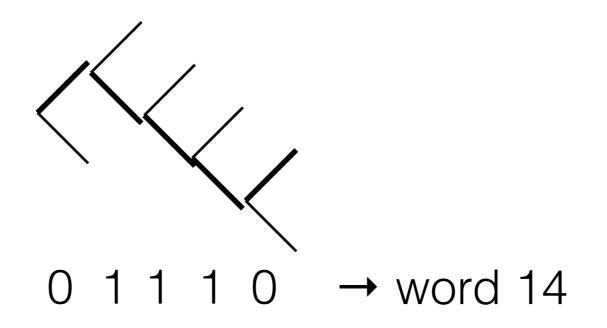
- Assign each word to a class
- Predict class first, then word given class



Quiz: What is the computational complexity?

Hierarchical Softmax (Morin and Bengio 2005)

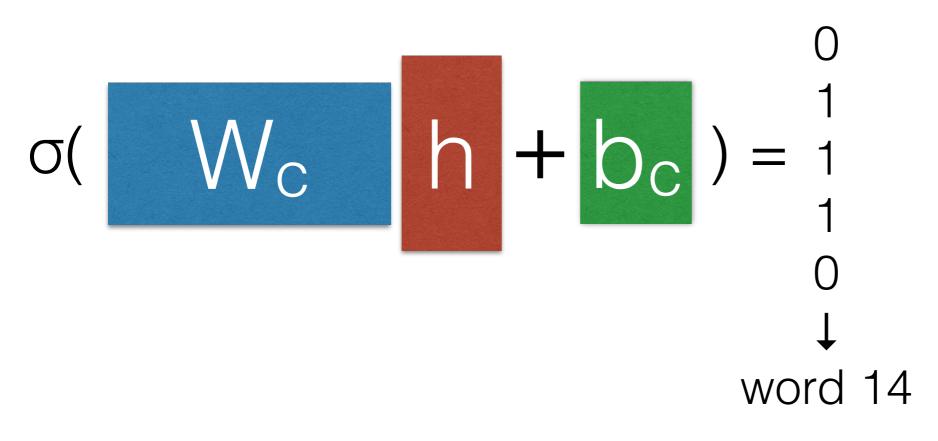
• Create a tree-structure where we make one decision at every node



• Quiz: What is the computational complexity?

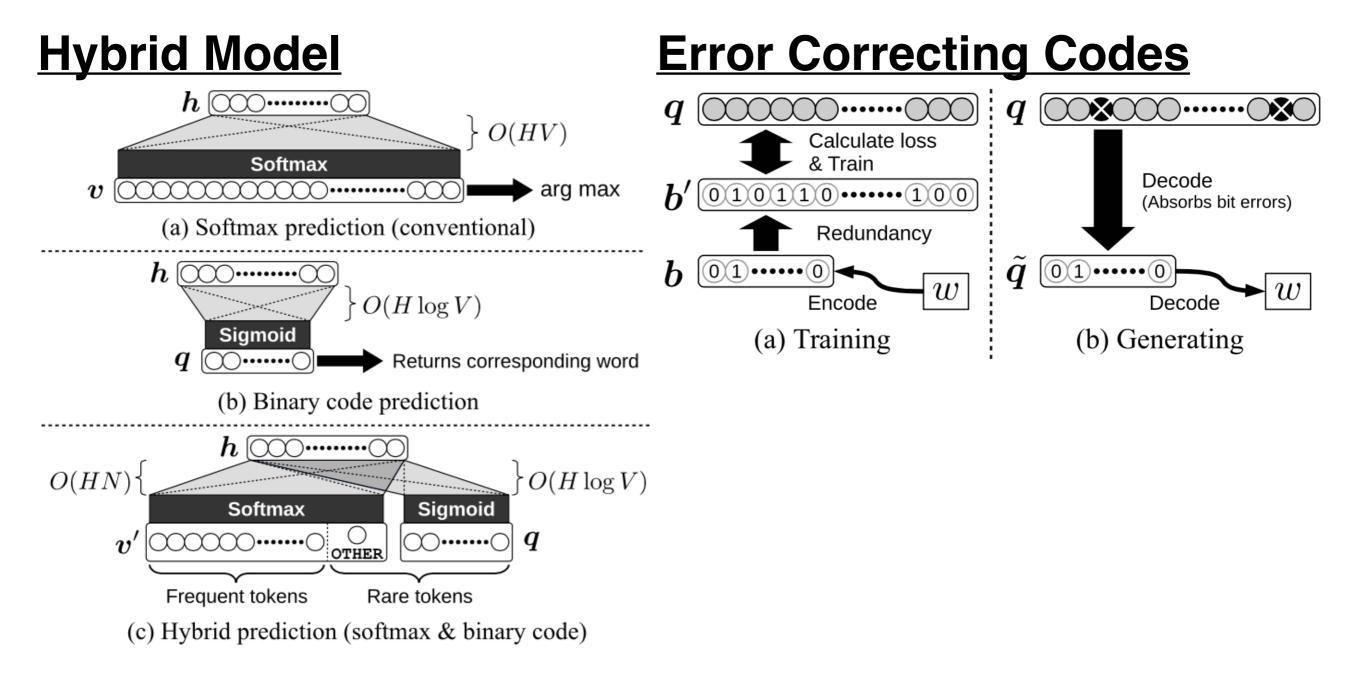
Binary Code Prediction (Dietterich and Bakiri 1995, Oda et al. 2017)

Choose all bits in a single prediction



Simpler to implement and fast on GPU

Two Improvement to Binary Code Prediction

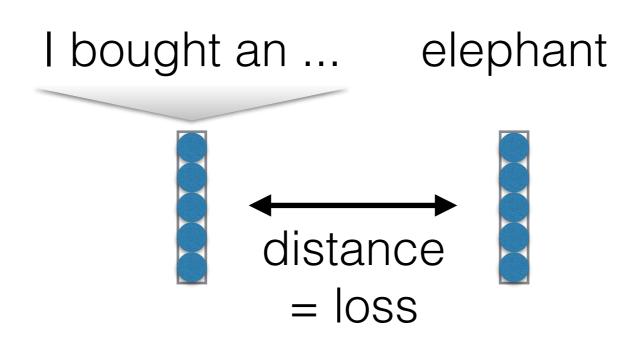


Let's Try it Out!

wordemb-binary-code.py

Embedding Prediction (Kumar and Tsvetkov 2019)

• Directly predict embeddings of outputs themselves



 Specifically: Von-Mises Fisher distribution loss, make embeddings close on the unit ball

Questions?