CS11-747 Neural Networks for NLP
Models w/ Latent Random

Variables

Chunting Zhou
P Carnegie Mellon University
#7»" Language Technologies Institute

Site
https://phontron.com/class/nn4nlp2019/

With Slides from Graham Neubig

https://phontron.com/class/nn4nlp2019/

Discriminative vs.
GGenerative Models

* Discriminative model: calculate the probability of output given
input P(Y|X)

* Generative model: calculate the probability of a variable P(X),
or multiple variables P(X,Y)

« Which of the following models are discriminative vs. generative?
e Standard BILSTM POS tagger
* Globally normalized CRF POS tagger

e Language model

Types of Variables

e Observed vs. Latent:
* Observed: something that we can see from our data, e.g. X or Y

 Latent: a variable that we assume exists, but we aren’t given the
value

e Deterministic vs. Random:

 Deterministic: variables that are calculated directly according
to some deterministic function

« Random (stochastic): variables that obey a probability
distribution, and may take any of several (or infinite) values

Quiz: What Types of
Variables?

* |n the an attentional sequence-to-sequence model
using MLE/teacher forcing, are the following variables
observed or latent”? deterministic or random®?
 The input word ids f

* The encoder hidden states h

* The attention values a

 The output word ids e

| atent Variable Models

- A latent variable model (LVM) is a probability
distribution over two sets of variables ¥, 2 :

p(z, z;0)

where the x variables are observed at learning
time In a dataset and z are latent variables.

VWhat Is Latent Random
Variable Model

e QOlder latent variable models

e Topic models (unsupervised)

VWhat Is Latent Random
Variable Model

e QOlder latent variable models

e Topic models (unsupervised)

e Hidden Markov Model (unsupervised tagger)

586

VWhat Is Latent Random
Variable Model

e QOlder latent variable models
e Topic models (unsupervised)
e Hidden Markov Model (unsupervised tagger)

e Some tree-structured Model (unsupervised parsing)

SRR

Why Latent Variable Models”?

e Some variables are not observed naturally and we
want to model / infer these hidden variables: e.qg.
topics of an article

e Specify structural relationships in the context of
unknown variables, to learn interpretable structure:
- Inject inductive bias / prior knowledge

Deep Structured Latent Variable
Viodels

e Specify structure, but interpretable structure is often
discrete: e.g. POS tags, dependency parse trees

e There is always a tradeoff between interpretability and
flexibility: model constraints v.s. model capacity

Examples of Deep Latent
Variable Models

e Deep latent variable models
e Variational Autoencoders (VAES)
e Generative Adversarial Network (GANS)

* Flow-based generative models

Variational Auto-encoders
(Kingma and Welling 2014)

A [Latent Variable Moadel

* We observed output X (assume a continuous vector for now)
 We have a latent variable z generated from a Gaussian

 We have a function f, parameterized by © that maps from z
to X, where this function is usually a neural net

z~NO, |

l /

An Examp\e (Goersch 2016)

f 1.5
" o
1.0} °¥ °o °a 0,
o % °
- Q‘. ¢ ..
%o , o ® °
.. o : 0.5+ o o
° oo 3o o0 ° ®e
oo @ o %°
.0. ™ oo © o P
o L8 oo ° 0.0 °
) o{ °g o o o .
o o
.o P ‘.."; .’ o o o
o o e © ° _ :. o
8’ §8° o —0.5¢ ° - .
° o ° .~= s ‘.
o °
e o
-1.0 ®
o ot .‘o. .“. N o"
o
-1.5 ‘
-2 -1 0 1 2 3 4 -1.5 -1.0 -0.5 0.0 0.5 1.0

A probabillistic perspective on
Variational Auto-Encoder

z~NO, I)

* /

 [or each datapointz :
« Draw latent variables z; ~ p(z) (prior)

» Draw data point x; ~ pg(z|z)
e Joint probability distribution over data and latent variables:

p(z,z) = p(z)pe(z|2)

What is Our Loss Function?

* We would like to maximize the corpus log likelihood
log P(X) = Z log P(x;0)

xrcX

* or a single example, the marginal likelihood is

Pla:0) — / Pz | 2:0)P(2)dz

* We can approximate this by sampling zs then summing

P(z;0) ~ » P(x|z;0) where S(z):={z";2' ~ P(2)}
zeS(x)

Variational Inference

Two tasks of interest:

e |earn the parameters ¢ of pg(z|2)

* Inference over z with the posterior distribution: pe(2|x)
given input x, what are its latent factors”

po(z|2)p(2)
p(x)

po(z|x) =

p(x) = /P(Z)pe(ﬂf\z)dz <- intractable

e Variational inference approximates the posterior
with a family of distributions ¢4 (z|x)

Variational Inference

* Variational inference approximates the true
posterior pe(z|z) with a family of distributions g4 (z|x)

minimize : KL(gq(2|2)||pe(z|x))

* Variational Lower Bound (ELBO)
log p(z) = ELBO + KL(qe(2|2)||pe(z]z))

ELBO = E,, -/ log po (2]2)] — KL(gs(2]2)]1p(2))

KL(q||p) > 0 => logp(x) > ELBO

Variational Inference

* Variational inference approximates the true
posterior pe(z|z) with a family of distributions g4 (z|x)

minimize : KL(gq(2|2)||pe(z|x))

* Variational Lower Bound (ELBO)

ELBO =

log p(x) = ELBO + KL(gs(]2) | Ips (2])

s (z)2) 108 Po(2|2)] — KL(gy (2]2)||p(2))

maximize : ELBO

Variational Auto-Encoders

log pe(x) > ELBO

<

L znqe (z)x) 108 Do (X|2)| — DkL(qe (z|%)[|p(2))
—_—

Reconstruction Loss KL Regularizer

The inequality holds for any g (z|x), but the lower bound is
tight only if q(z|x) = p(z|x)

p(z|Xx) is intractable

Practice

Prove
log pe(X) >= Eanayziollogpe(x|z)] — Dkr(ge(2]x)p(2))
| —— ——_—_—_—_—_—_,—,, Y ~—_—_,.—
Reconstruction Loss KL Regularizer

Hint: use Jensen’s inequality

Variational Autoencodgers

lOg Po (X) = IEj’zwqqs(ZIX) log pe(x|z)] — DKL(QQb(Z‘X)Hp(Z))
| Reconstruction Loss KL Regularizer
Approx.
Posterior Model
Params @\ Params
G (2]x) peo(x|z)
Inference Generator
(Encoder) (Decoder)

\
\
\ @
~ —~—

Variational Autoencodgers

lOg Po (X) = IEj’zwqqs(ZIX) log pe(x|z)] — DKL(QQb(Z‘X)Hp(Z))
| Reconstruction Loss KL Regularizer
Approx.
Posterior Model
Params @ Params
\ Regularized Autoencoder
q¢(2]x) peo(x|z)
Inference Generator
(Encoder) (Decoder)

\
\
\ @
~ —~—

Why prior 7

log pe(X) >= Eagy(apelogpe(x|z)] — Dxi(gg(z[x)|lp(2))

Reconstruction Loss KL Regularizer
Approx.
Posterior Model
Params @ Params
q¢(2]x) Pe X\Z)
Inference Generator
(Encoder) (Decoder)

\
\
\ @
~ —~—

Why prior 7

log pg(X) >= Eangy(aix 108 po (x|2)] —Prrtemtbetpien—

Reconstruction Loss KL Regularizer
Approx.
Posterior Model
Params @ Params
q¢(2]x) Pe X\Z)
Inference Generator
(Encoder) (Decoder)

\
\
\ @
~ —~—

VAE vS. At

@ i-O] -@

VAE vs. AE
@ H@[@

p(A inductive bias !

VAE

VAE vS. At

VAE

VAE vS. At

sssssssssmsmnmnmnnnns 'lllllllllllll;llllllll:

VAE vS. At

(1) Can’t sample new data from AE
(2) Can’t compute the log likelihood
of data X

AE Is not generative model.:

Why VAE

e Generative modeling
 Representation learning

e Representation space can be regularized by prior

 Unsupervised learning

VAE AE
Genera_tlve Ves NG
modeling
Represen_tatlon Yos Ves
Learning
Unsuper_wsed Yes Ves
Learning
Controlled 5
representation Yes No
space ’

Why VAE

VAE AE LSTMLM
Genera_tlve Ves NG
modeling
Represen_tatlon Yos Ves
Learning
Unsuper_wsed Yes Ves
Learning
Controlled 5
representation Yes No
space ’

Why VAE

VAE AE LSTMLM
Genera_tlve Ves NG Ves
modeling
Represen_tatlon Yos Ves Yes
Learning
Unsuper_wsed Yes Yes Yes
Learning
Controlled 5 5
representation Yes No No
space ’ ’

Why VAE

VAE AE ~ LSTMLM CNN Classifier
Genera_tlve Ves NG Ves
modeling
Represen_tatlon Yos Yes Ves
Learning
Unsuper_wsed Yes Yes Yes
Learning
Controlled 5 5
representation Yes No No
space ’ ’

Why VAE

VAE AE ~ LSTMLM CNN Classifier
Genera_tlve Yes No Yes No
modeling
Represen_tatlon Yes Yes Yes Yes
Learning
Unsuper_wsed Yes Yes Yes No
Learning
Controlled 5 5 5
representation Yes No No No
space ’ ’ ’

L earning VAE

log pe(X) >= Eagy(apelogpe(x|z)] — Dxi(gg(z[x)|lp(2))

Reconstruction Loss KL Regularizer
Approx.
Posterior Model
Params @ Params
q¢(2]x) Pe X\Z)
Inference Generator
(Encoder) (Decoder)

\
\
\ @
~ —~—

Problem!
Sampling Breaks Backprop

| X — f(2)|I?
f(2)
Decoder
KLIN (p(X), S(X)|IN(0,)] ('IT‘)
(X)) [2(X
Encoder

(Q)
X

Figure Credit: Doersch (2016)

Solution:
Re-parameterization Irick

| X = f)IP
i\
f(z)
0\
KLIN (1u(X), 2(X))[|N(0,1)]| | Decoder
A A (P)
+
K
Encoder Sample € from N (0,)
(Q)
1
X

Figure Credit: Doersch (2016)

An Example: Generating Sentences
w/ Variational Autoencoders

Generating from Language
Models

* Remember: using ancestral sampling, we can
generate from a normal language model

while xi1 1= “</s>":
Xj ~ P(Xj | X1, ..., X-1)

* We can also generate conditioned on something
P(y|x) (e.g. translation, image captioning)

while yj1 1= "</s>":
Vi ~ PO TX Y, s Vi)

Generating Sentences from a
Continuous Space (Bowman et al. 2015)

* [he VAE-based approach is conditional language
model that conditions on a latent variable z

* Like an encoder-decoder, but latent representation
'S latent variable, input and output are identical

Sentence x

1
i— Q RNN —»i— P RNN
- ¥

Latentz Sentence x

Motivation for Latent
Variaples

* Allows for a consistent latent space of sentences?

* e.9g. Interpolation between two sentences

VAE

Standard encoder-decoder

i went to the store to buy some groceries .
1 store to buy some groceries .

1 were to buy any groceries .

horses are to buy any groceries .

horses are to buy any animal .

horses the favorite any animal .

horses the favorite favorite animal .

horses are my favorite animal .

“iwant to talk to you . ”

“t want to be with you . ”

“ do n’t want to be with you .
1 do n’t want to be with you .
she did n’t want to be with him .

»

he was silent for a long moment .
he was silent for a moment .

it was quiet for a moment .

it was dark and cold .

there was a pause .

it was my turn .

 More robust to noise? VAE can be viewed as
standard model + regularization.

VAE

VAE vS. At

sssssssssmsmnmnmnnnns 'lllllllllllll;llllllll:

| et’s Try it Out!

vae—-1lm.py

Difficulties in Training

» Of the two components in the VAE objective, the
KL divergence term is much easier to learn!

4:sz(z|m)[lOgP(w | 2)| = KL[Q(z |)[| P(2)]

Requires good Just need to
generative model Set the mean/variance

of Q to be same as P
Q(z|r) = P(2)

* Results in the model learning to rely solely on
decoder and ignore latent variable (P(x|z) = P(x))
-> Posterior Collapse

Solution 1;
KL Divergence Annealing

e Basic idea: Multiply KL term by a constant A starting at
zero, then gradually increase to 1

* Result: model can learn to use z before getting penalized

8.0
7.0

100%

o
S
X

60%
40%

KL term weight

20% — —~

0% 0.0
0 10000 20000 30000 40000 50000

Step
=== KL term weight — KL term value

Figure Credit: Bowman et al. (2017)

Solution 2;
Free bits / KL thresholding

* Free bits replaces the KL term in ELBO with a hinge
loss that maxes each component of the original KL
with a constant:

Z max |\, Dkr,(q4(2i|7)||p(2:))]

e A :Target rate

Solution 3:
Weaken the Decoder

» But theoretically still problematic: it can be shown that
the optimal strategy Is to ignore z when it is not
necessary (Chen et al. 2017)

» Solution: weaken decoder P(x|z) so using z is essential

* Use word dropout to occasionally skip inputting
porevious word in X (Bowman et al. 2015)

e Use a convolutional decoder w/ limited context
(Yang et al. 2017)

Solution 4:
Aggressive Inference Network Learning
max logpe(x) — D (qe(2|x)|pe(2]x))

0, ~—— ~- -

marginal log data likelthood agreement between approximate and model posteriors

\ 4

max max logpe(x) - Dx1(g4(2[%)|pe(2[x))
o & ~- ~-

marginal log data likelthood agreement between approximate and model posteriors

(He et al. 2019)

Handaling Discrete Latent
Variables

Discrete Latent Variables?

* Many variables are better treated as discrete
* Part-of-speech of a word
* Class of a question
* Writer traits (left-handed or right-handed, etc.)

* How do we handle these?

Method 1: Enumeration
* For discrete variables, our integral is a sum
P(z;0) = » P(x| 2 0)P(z)

* |f the number of possible configurations for z is
small, we can just sum over all of them

Method 2: Sampling

 Randomly sample a subset of configurations of z
and optimize with respect to this subset

e \Various flavors:
e Minimum risk training
e Maximize ELBO loss

e Score function gradient estimator - Policy Gradient
Method
* Unbiased estimator but high variance - need to
control variance

Method 3: Reparameterization
(Maddison et al. 2017, Jang et al. 2017)

 Reparameterization also possible for discrete variables!
Original Categorical Sampling Method:

z = cat-sample(P(z | x))
Reparameterized Method

z = argmax(log P(z |) + Gumbel(0,1))

where t

ne Gumbel distri

oution IS

Gumbel(0, -

) = —log(—log(

Uniform(0,1)))

 Backprop is still not possible, due to argmax

Gumbel-Softmax

* A way to soften the decision and allow for continuous
gradients

e |Instead of argmax, take softmax with temperature T
% = softmax((log P(z | &) + Gumbel(0,1))!/7)

 As T approaches O, will approach max
a)

Categorical

ol la b
1L L1l

category

7 =10.0

sample expectation

Application Examples
in NLP

Symbol Sequence Latent
Variables (Miao and Blunsom 2016)

 Encoder-decoder with a sequence of latent symbols

nstruction (Soft Attentio)5]; ; 53. S, 5

--

Encoder Compressor

e Summarization in Miao and Blunsom (2016)
e Attempts to “discover” language (e.g. Havrylov and Titov 2017)

e But things may not be so simple! (Kottur et al. 2017)

Controllable Sequence-to-sequence
(Zhou and Neubig 2017)

e | atent continuous and discrete variables can be trained
using auto-encoding or encoder-decoder objective

Latent Continuou

' '

ST

RUCTVAE

—: Tree-structured Latent Variable Models for

Semi-supervised Semantic Parsing (Yin et al. 2018)

Structured Latent Sem c Spac
g Labeled Data { F/.\.}

‘ Unlabeled Data o("TJ} A ﬁ Prior
— p(% ™)

Supervised Objective

S " log gs(% ¥ &P) F
(&@f.) € Labeled Data

Unsupervised Objective
D Inference Model Reconstruction Model
D _logn(¢

é@E Unlabeled Data

ACLIED po(& | wm)

&@ Sort my_list in descending order
o(&)= p(&)p(i)

Unsupervised Recurrent Neural

Network Grammars
(Kim et al., 2019)

REDUCE

hungry cat

The hungry cat meows

Inference Network ¢s(z|x) Generative Model py(x, z)

Questions?

