CS11-747 Neural Networks for NLP Multi-task, Multi-lingual Learning

Graham Neubig

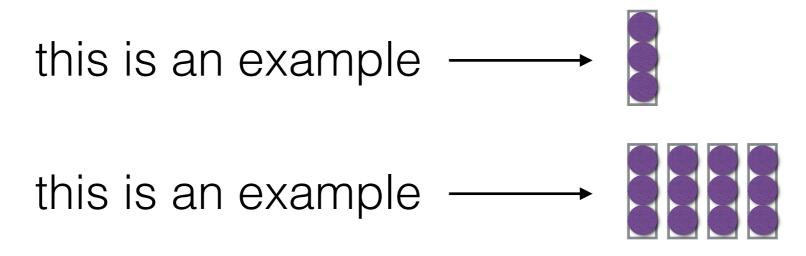
Carnegie Mellon University

Language Technologies Institute

Site <u>https://phontron.com/class/nn4nlp2018/</u>

Remember, Neural Nets are Feature Extractors!

 Create a vector representation of sentences or words for use in downstream tasks



 In many cases, the same representation can be used in multiple tasks (e.g. word embeddings)

Types of Learning

- Multi-task learning is a general term for training on multiple tasks
- **Transfer learning** is a type of multi-task learning where we only really care about one of the tasks
- Domain adaptation is a type of transfer learning, where the output is the same, but we want to handle different topics or genres, etc.

When to Multi-task?

Plethora of Tasks in NLP

- In NLP, there are a plethora of tasks, each requiring different varieties of data
 - Only text: e.g. language modeling
 - Naturally occurring data: e.g. machine translation
 - Hand-labeled data: e.g. most analysis tasks
- And each in many languages, many domains!

Rule of Thumb 1: Multitask to Increase Data

- Perform multi-tasking when one of your two tasks has many fewer data
- General domain → specific domain
 (e.g. web text → medical text)
- High-resourced language → low-resourced language
 (e.g. English → Telugu)
- Plain text → labeled text
 (e.g. LM -> parser)

Rule of Thumb 2:

• Perform multi-tasking when your tasks are related

common optimal hypothesis class, i.e. tasks have the same inductive bias.

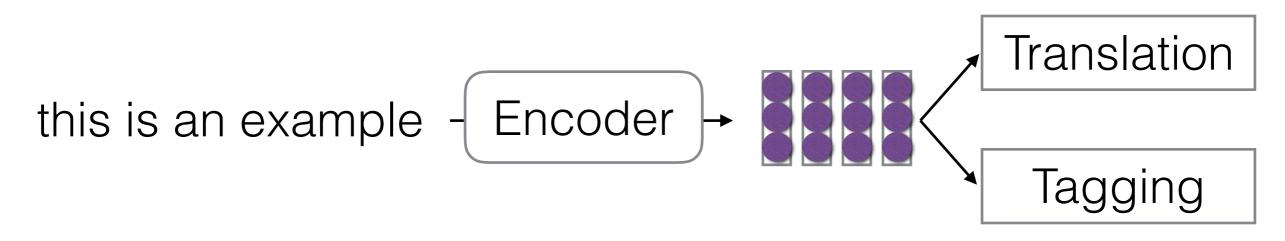
could use the same features to make a decision

• e.g. predicting eye gaze and summarization (Klerke et al. 2016)

Methods for Multi-task Learning

Standard Multi-task Learning

Train representations to do well on multiple tasks at once



- In general, as simple as randomly choosing minibatch from one of multiple tasks
- Many many examples, starting with Collobert and Weston (2011)

Pre-training

• First train on one task, then train on another

- Widely used in word embeddings (Turian et al. 2010)
- Also pre-training sentence representations (Dai et al. 2015)

Examples of Pre-training Encoders

- Common to pre-train encoders for downstream tasks, common to use:
- Language models (Dai and Le 2015)
- Translation models (McCann et al. 2017)
- Bidirectional LMs (Peters et al. 2017)
- Masked LMs (Devlin et al. 2019)

Regularization for Pre-training (e.g. Barone et al. 2017)

- Pre-training relies on the fact that we won't move too far from the initialized values
- We need some form of regularization to ensure this
 - **Early stopping:** implicit regularization stop when the model starts to overfit
 - **Explicit regularization:** L2 on difference from initial parameters

$$\theta_{adapt} = \theta_{pre} + \theta_{diff} \quad \ell(\theta_{adapt}) = \sum_{\langle X, Y \rangle \in \langle \mathcal{X}, \mathcal{Y} \rangle} -\log P(Y \mid X; \theta_{adapt}) + ||\theta_{diff}||$$

• Dropout: Also implicit regularization, works pretty well

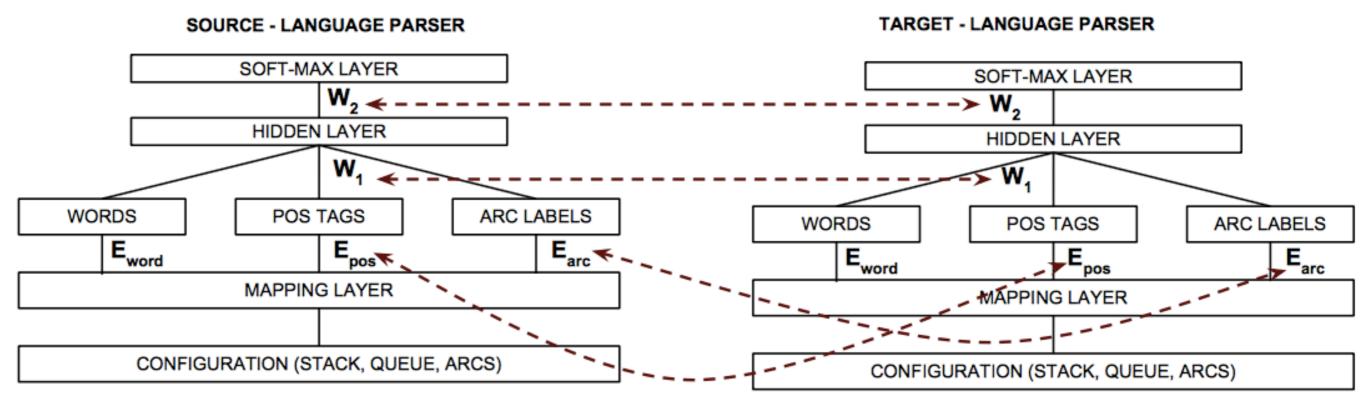
Selective Parameter Adaptation

- Sometimes it is better to adapt only some of the parameters
- e.g. in cross-lingual transfer for neural MT, Zoph et al. (2016) examine best parameters to adapt

Setting	Dev	Dev
	BLEU	PPL
No retraining	0.0	112.6
Retrain source embeddings	7.7	24.7
+ source RNN	11.8	17.0
+ target RNN	14.2	14.5
+ target attention	15.0	13.9
+ target input embeddings	14.7	13.8
+ target output embeddings	13.7	14.4

Soft Parameter Tying

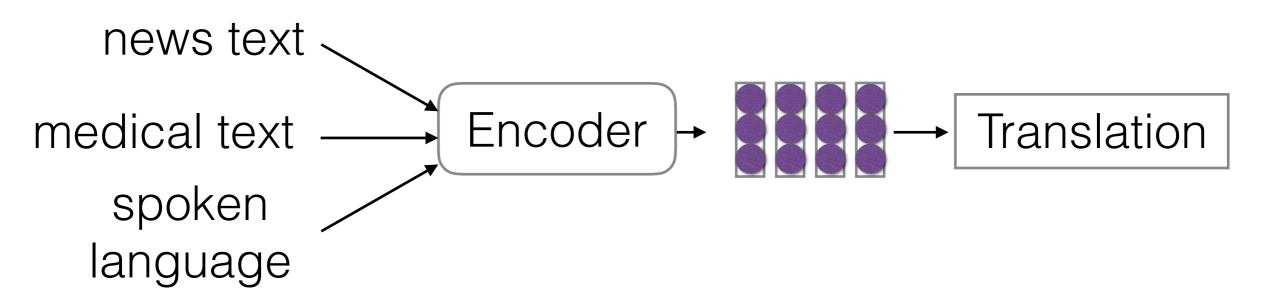
- It is also possible to share parameters loosely between various tasks
- Parameters are regularized to be closer, but not tied in a hard fashion (e.g. Duong et al. 2015)



Domain Adaptation

Domain Adaptation

 Basically one task, but incoming data could be from very different distributions



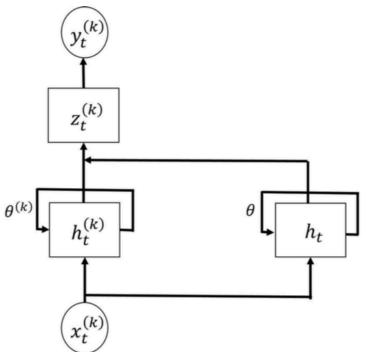
- Often have big grab-bag of all domains, and want to tailor to a specific domain
- Two settings: supervised and unsupervised

Supervised/Unsupervised Adaptation

- Supervised adaptation: have data in target domain
 - Simple pre-training on all data, tailoring to domain-specific data (Luong et al. 2015)
 - Learning domain-specific networks/features
- Unsupervised adaptations: no data in target domain
 - Matching distributions over features

Supervised Domain Adaptation through Feature Augmentation

• e.g. Train general-domain and domain-specific feature extractors, then sum their results (Kim et al. 2016)

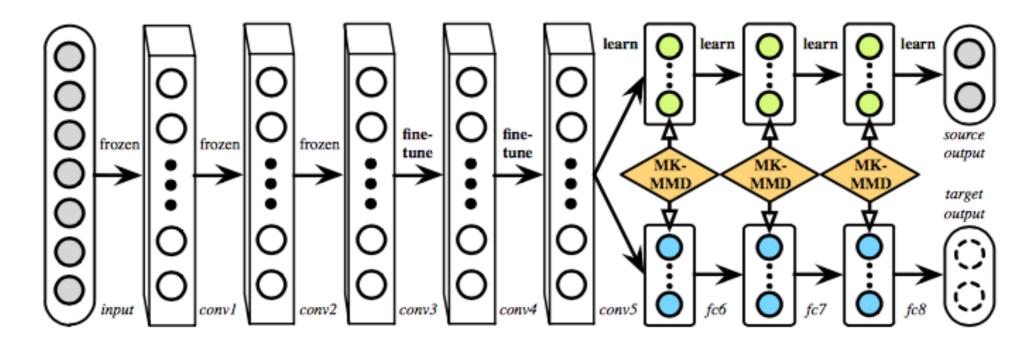


• Append a domain tag to input (Chu et al. 2016)

<news> news text
<med> medical text

Unsupervised Learning through Feature Matching

 Adapt the latter layers of the network to match labeled and unlabeled data using multi-kernel mean maximum discrepancy (Long et al. 2015)

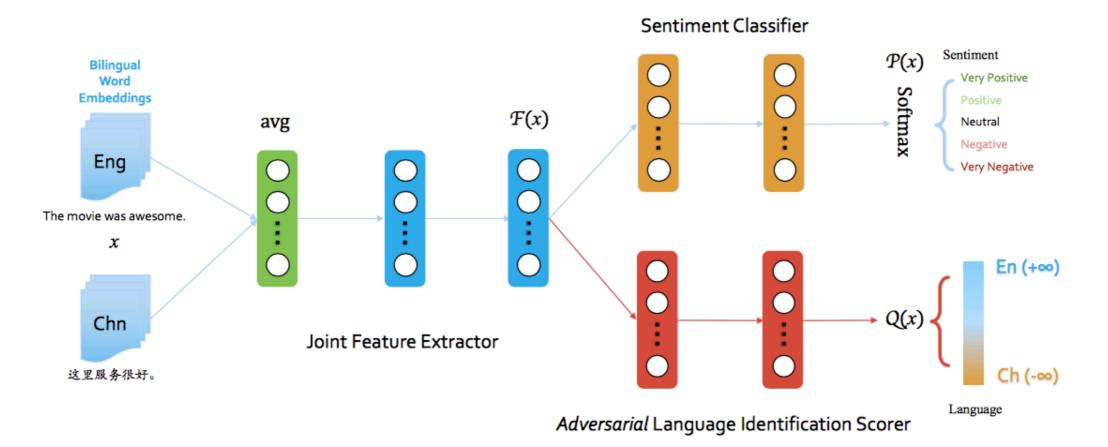


• Similarly, adversarial nets (Ganin et al. 2016)

Multi-lingual Models

Multilingual Inputs

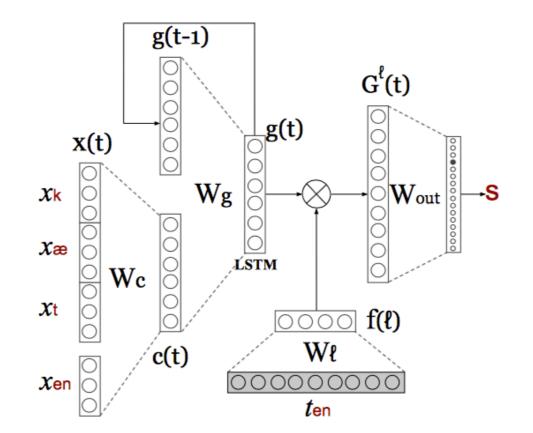
- Often as simple as training a single (large) encoder
- Optionally: use adversarial objective to help ensure that information is shared (Chen et al. 2016)



Quite successful in a number of tasks

Multilingual Structured Prediction/ Multilingual Outputs

- Things are harder when predicting a sequence of actions (parsing) or words (MT) in different languages
- One simple method: add embedding of the expected output to your model (e.g. Tsvetkov et al. 2016)



Multi-lingual Sequence-tosequence Models

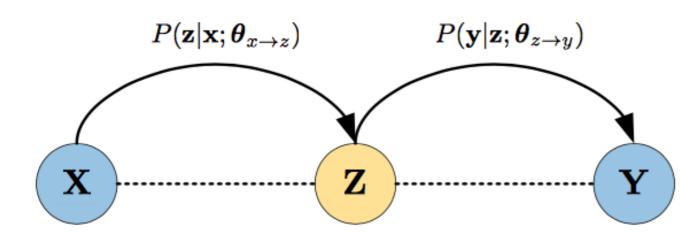
 It is possible to translate into several languages by adding a tag about the target language (Johnson et al. 2016, Ha et al. 2016)

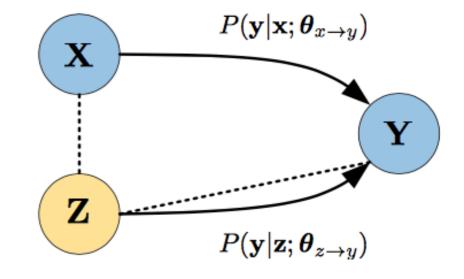
<fr> this is an example → ceci est un exemple
<ja> this is an example → これは例です

- Potential to allow for "zero-shot" learning: train on fr↔en and ja↔en, and use on fr↔ja
 - Works, but not as effective as translating fr→en→ja

Teacher-student Networks for Multilingual Adaptation (Chen et al. 2017)

 Use a better pivoted model to "teach" a worse zero-shot model to translate well





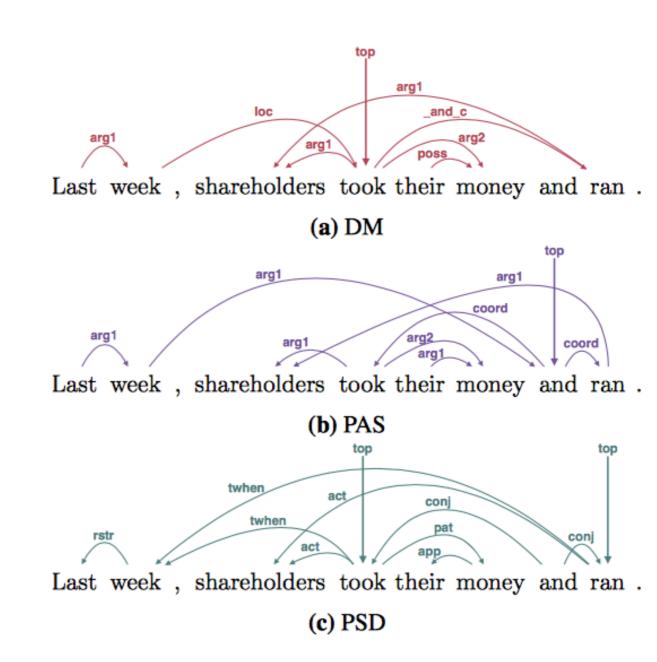
Multi-task Models

Types of Multi-tasking

- Most common: train on plain text or translated text, use information for syntactic analysis task
- Also, training on multiple annotation tasks
- Other examples:
 - Training with multiple annotation standards
 - Training w/ different layers for different tasks

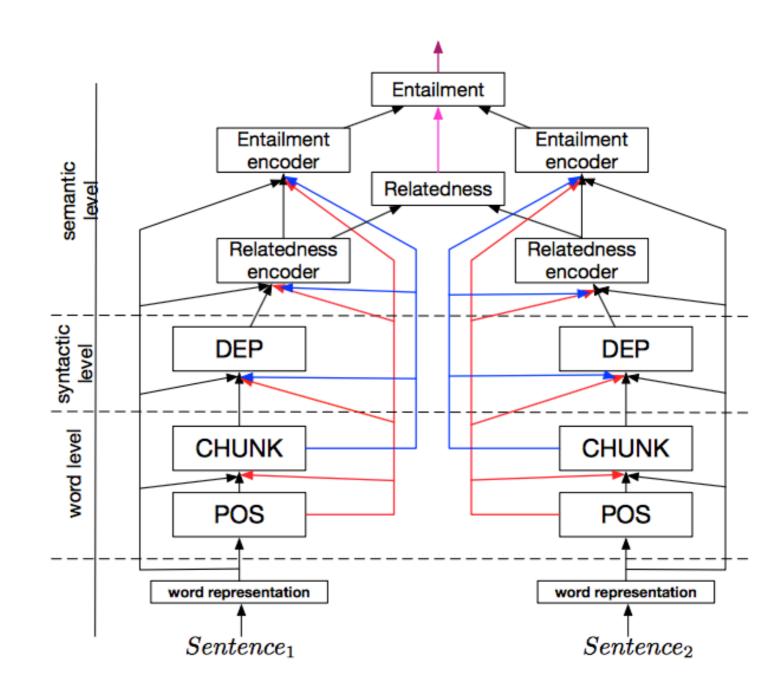
Multiple Annotation Standards

- For analysis tasks, it is possible to have different annotation standards
- Solution: train models that adjust to annotation standards for tasks such as semantic parsing (Peng et al. 2017).
- We can even adapt to individual annotators! (Guan et al. 2017)



Different Layers for Different Tasks (Hashimoto et al. 2017)

- Depending on the complexity of the task we might need deeper layers
- Choose the layers to use based on the level of semantics required



Different Layers for Different Tasks (Toshniwal et al 2017)



Summary of design dimensions

Order

- 1. First X —> Y, then X —> Z (transfer, pretraining) using pre-trained BERT/ELMo/other embeddings falls in this category!
- 2. Alternate between X —> Y and X —> Z (most common)
- 3. Jointly train on triplets X —> {Y,Z}
 (rare due to data scarcity)
 -maybe sharing different layers: X —> Y —> Z
- 4. Variations: X —> Y —> X Reconstruction: (Tu et al 2017)

Summary of design dimensions

Parameter Sharing

- 1. None (soft tying through regularization)
- 2. Some, e.g.:
 - only encoder (typical: X—>Y,Z)
 - embedding layer (e.g. BERT)
- 3. All (using tag for task/language)
- 4. Learn which parameters to share e.g. sluice network (Ruder et al. 2019)

Questions?