
CS11-747 Neural Networks for NLP

Advanced Search
Algorithms

Graham Neubig
https://phontron.com/class/nn4nlp2018/

(Some Slides by Daniel Clothiaux)

https://phontron.com/class/nn4nlp2018/

Why search?

• So far, decoding has mostly been greedy

• Chose the most likely output from softmax, repeat

• Can we find a better solution?

• Oftentimes, yes!

Basic Search Algorithms

Beam Search
• Instead of picking the highest

probability/score, maintain
multiple paths

• At each time step

• Expand each path

• Choose a subset paths from the
expanded set

Why will this help
Next word P(next word)

Pittsburgh 0.4

New York 0.3

New Jersey 0.25

Other 0.05

• How to select which paths to keep expanding?

• Histogram Pruning: Keep exactly k paths at every
time step

• Score Threshold Pruning: Keep all paths where
score is within a threshold α of best score s1 
 sn + α > s1

Basic Pruning Methods
(Steinbiss et al. 1994)

Prediction-based Pruning Methods
(e.g. Stern et al. 2017)

• A simple feed forward network predicts actions to
prune

• This works well in parsing, as most of the possible
actions are Open, vs. a few Closes and one Shift

Backtracking-based Pruning
Methods

(Buckman et al, 2016)

What beam size should I
use?

• Larger beam sizes will be slower

• May not give better results

• Sometimes result in shorter sequences

• May favor high-frequency words

• Mostly done empirically -> experiment (range of
5-100?)

Variable length output
sequences

• In many tasks (eg. MT), the output sequences will be of
variable length

• Running beam search may then favor short sentences

• Simple idea:

• Normalize by the length-divide by |N|

• On the Properties of Neural Machine Translation:
Encoder–Decoder (Cho et al., 2014)

• Can we do better?

More complicated normalization
‘Google’s Neural Machine Translation System: Bridging the Gap

between Human and Machine Translation’ (Y Wu et al. 2016)

• X,Y: source, target sentence

• α: 0 < α < 1, normally in [0.6, 0.7]

• β: coverage penalty

• This is found empirically

Predict the output length
(Eriguchi et al. 2016)

• Add a penalty based off of length differences
between sentences

• Calculate P(len(y) | len(x)) using corpus statistics

Why do Bigger Beams Hurt, pt. 2
(Ott et. al. 2014)

• They found that higher beam sizes:

• Almost always lead to increased model loss

• Often times lead to decreased evaluation score

• Why?

• They theorize the model spreads it’s probability too much

• Intrinsic (multiple translations can be good) and extrinsic
uncertainty (bad training data, especially copies)

• These combined mean individual good examples aren’t properly
weighted, expanding beam compounds this problem

Beam Search for Disparate
Action Spaces

Dealing with disparity in actions
Effective Inference for Generative Neural Parsing

(Mitchell Stern et al., 2017)

• In generative parsing there are Shifts (or
Generates) equal to the vocabulary size

• Opens equal to # of labels

Solution
• Group sequences of actions of the

same length taken after the ith Shift.

• Create buckets based off of the
number of Shifts and actions after
the Shift

• Fast tracking:

• To further reduce comparison
bias, certain Shifts are
immediately added to the next
bucket

Improving Diversity in
Search

Improving Diversity in top N Choices
Mutual Information and Diverse Decoding Improve Neural Machine

Translation (Li et al., 2016)

• Entries in the beam can be very similar

• Improving the diversity of the top N list can help

• Score using source->target and target-> source translation
models, language model

Improving Diversity through
Sampling
(Shao et al., 2017)

• Stochastically sampling from the softmax gives
great diversity!

• Unlike in translation, the distributions in
conversation are less peaky

• This makes sampling reasonable

Sampling without Replacement
Stochastic Beams and Where to Find Them: The Gumbel-Top-k Trick for

Sampling Sequences Without Replacement (Kool et. al 2019)

• Gumbel distribution: If U is uniform(0,1)

• G(φ) = φ − log(− log U)

• Perturbing log probabilities log-probabilities with Gumbel noise and finding the
largest element is sampling from a categorical distribution without replacement

• A nice description of the Gumbel max trick can be found in the reading

Sampling without
Replacement (con’t)

Monte-Carlo Tree Search
Human-like Natural Language Generation Using

Monte Carlo Tree Search

Incorporating Search in
Training

Using beam search in training
Sequence-to-Sequence Learning

as Beam-Search Optimization (Wiseman et al., 2016)
• Decoding with beam search has biases

• Exposure: Model not exposed to errors during training

• Label: scores are locally normalized

• Possible solution: train with beam search

More beam search in training
A Continuous Relaxation of Beam Search for End-to-end
Training of Neural Sequence Models (Goyal et al., 2017)

A* and Look-ahead
algorithms

A* search

• Basic idea:

• Iteratively expand paths that have the cheapest
total cost along the path

• total cost = cost to current point + estimated cost
to goal

• f(n) = g(n) + h(n)

• g(n): cost to current point

• h(n): estimated cost to goal

• h should be admissible and consistent

Classical A* parsing
(Klein et al., 2003)

• PCFG based parser

• Inside (g) and outside (h) scores are maintained

• Inside: cost of building this constituent

• Outside: cost of integrating constituent with rest of tree

Adoption with neural networks:
CCG Parsing

(Lewis et al. 2014)

• A* for parsing

• g(n): sum of encoded LSTM scores over current
span

• h(n): sum of maximum encoded scores for each
constituent outside of current span

CCG Parsing:

Is the heuristic admissible?
(Lee et al. 2016)

• No!

• Fix this by adding a global model score < 0 to the elements outside of the current
span

• This makes the estimated cost lower than the actual cost

• Global model: tree LSTM over completed parse

• This is significantly slower than the embedding LSTM, so first evaluate g(n),
then lazily expand good scores

Estimating future costs
Li et al., 2017)

A* search: benefits and
drawbacks

• Benefits:

• With heuristic, has nice optimality guarantees

• Strong results in CCG parsing

• Drawbacks:

• Needs more construction than beam search, can’t
easily throw on existing model

• Requires a good heuristic for optimality guarantees

Actor Critic
(Bahdanau et. al., 2017)

• Basic idea:

• Use Neural Model as an actor that predicts
actions (say, the next word)

• Use a critic to predict final reward (in this case,
BLEU) for MT models

• Actor trained similarly to REINFORCE, critic
trained with TD

Actor Critic (continued)

• T is the sequence, M in the set of examples, and a
the potential next actions, Q reward

Actor:

Critic:

• C is a measure of reward over average reward
similar to REINFORCE style algorithms

Other search
algorithms

Particle Filters
(Buys et al., 2015)

• Similar to beam search

• Think of it as beam search with a width that depends on
certainty of it’s paths

• More certain, smaller, less certain, wider

• There are k total particles

• Divide particles among paths based off of probability of
paths, dropping any path that would get <1 particle

• Compare after the same number of Shifts

Reranking
(Dyer et al. 2016)

• If you have multiple different models, using one to rerank outputs can
improve performance

• Classically: use a target language language model to rerank the best
outputs from an MT system

• Going back to the generative parsing problem, directly decoding from a
generative model is difficult

• However, if you have both a generative model B and a discriminative
model A

• Decode with A then rerank with B

• Results are superior to decoding then reranking with a separately
trained B

Questions?

