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Why search?

• So far, decoding has mostly been greedy 

• Chose the most likely output from softmax, repeat 

• Can we find a better solution? 

• Oftentimes, yes!



Basic Search Algorithms



Beam Search
• Instead of picking the highest 

probability/score, maintain 
multiple paths 

• At each time step 

• Expand each path 

• Choose a subset paths from the 
expanded set



Why will this help
Next word P(next word)

Pittsburgh 0.4

New York 0.3

New Jersey 0.25

Other 0.05



• How to select which paths to keep expanding? 

• Histogram Pruning: Keep exactly k paths at every 
time step 

• Score Threshold Pruning: Keep all paths where 
score is within a threshold α of best score s1 
   sn + α > s1

Basic Pruning Methods 
(Steinbiss et al. 1994)



Prediction-based Pruning Methods 
(e.g. Stern et al. 2017)

• A simple feed forward network predicts actions to 
prune 

• This works well in parsing, as most of the possible 
actions are Open, vs. a few Closes and one Shift



Backtracking-based Pruning 
Methods 

(Buckman et al, 2016)



What beam size should I 
use?

• Larger beam sizes will be slower 

• May not give better results 

• Sometimes result in shorter sequences 

• May favor high-frequency words 

• Mostly done empirically -> experiment (range of 
5-100?)



Variable length output 
sequences

• In many tasks (eg. MT), the output sequences will be of 
variable length 

• Running beam search may then favor short sentences 

• Simple idea: 

• Normalize by the length-divide by |N| 

• On the Properties of Neural Machine Translation: 
Encoder–Decoder (Cho et al., 2014) 

• Can we do better?



More complicated normalization 
‘Google’s Neural Machine Translation System: Bridging the Gap 

between Human and Machine Translation’  (Y Wu et al. 2016)

• X,Y: source, target sentence 

• α: 0 < α < 1, normally in [0.6, 0.7] 

• β: coverage penalty 

• This is found empirically



Predict the output length 
(Eriguchi et al. 2016)

• Add a penalty based off of length differences 
between sentences 

• Calculate P(len(y) | len(x)) using corpus statistics



Why do Bigger Beams Hurt, pt. 2 
(Ott et. al. 2014)

• They found that higher beam sizes: 

• Almost always lead to increased model loss 

• Often times lead to decreased evaluation score 

• Why? 

• They theorize the model spreads it’s probability too much 

• Intrinsic (multiple translations can be good) and extrinsic 
uncertainty (bad training data, especially copies) 

• These combined mean individual good examples aren’t properly 
weighted, expanding beam compounds this problem



Beam Search for Disparate 
Action Spaces



Dealing with disparity in actions 
Effective Inference for Generative Neural Parsing 

(Mitchell Stern et al., 2017)

• In generative parsing there are Shifts (or 
Generates) equal to the vocabulary size  

• Opens equal to # of labels



Solution
• Group sequences of actions of the 

same length taken after the ith  Shift. 

• Create buckets based off of the 
number of Shifts and actions after 
the Shift 

• Fast tracking: 

• To further reduce comparison 
bias, certain Shifts are 
immediately added to the next 
bucket



Improving Diversity in 
Search



Improving Diversity in top N Choices 
Mutual Information and Diverse Decoding Improve Neural Machine 

Translation (Li et al., 2016)

• Entries in the beam can be very similar 

• Improving the diversity of the top N list can help 

• Score using source->target and target-> source translation 
models, language model



Improving Diversity through 
Sampling 
(Shao et al., 2017)

• Stochastically sampling from the softmax gives 
great diversity! 

• Unlike in translation, the distributions in 
conversation are less peaky 

• This makes sampling reasonable



Sampling without Replacement 
Stochastic Beams and Where to Find Them: The Gumbel-Top-k Trick for 

Sampling Sequences Without Replacement (Kool et. al 2019)

• Gumbel distribution: If U is uniform(0,1) 

• G(φ) = φ − log(− log U) 

• Perturbing log probabilities log-probabilities with Gumbel noise and finding the 
largest element is sampling from a categorical distribution without replacement 

• A nice description of the Gumbel max trick can be found in the reading



Sampling without 
Replacement (con’t)



Monte-Carlo Tree Search 
Human-like Natural Language Generation Using 

Monte Carlo Tree Search



Incorporating Search in 
Training



Using beam search in training 
Sequence-to-Sequence Learning 

as Beam-Search Optimization (Wiseman et al., 2016)
• Decoding with beam search has biases 

• Exposure: Model not exposed to errors during training 

• Label:  scores are locally normalized 

• Possible solution: train with beam search



More beam search in training 
A Continuous Relaxation of Beam Search for End-to-end 
Training of Neural Sequence Models (Goyal et al., 2017)



A* and Look-ahead 
algorithms



A* search

• Basic idea: 

• Iteratively expand paths that have the cheapest 
total cost along the path 

• total cost = cost to current point + estimated cost 
to goal



• f(n) = g(n) + h(n) 

• g(n): cost to current point 

• h(n): estimated cost to goal 

• h should be admissible and consistent



Classical A* parsing 
(Klein et al., 2003)

• PCFG based parser 

• Inside (g) and outside (h) scores are maintained 

• Inside: cost of building this constituent  

• Outside: cost of integrating constituent with rest of tree



Adoption with neural networks:  
CCG Parsing 

(Lewis et al. 2014)

• A* for parsing 

• g(n): sum of encoded LSTM scores over current  
span 

• h(n): sum of maximum encoded scores for each 
constituent outside of current span

CCG Parsing:



Is the heuristic admissible? 
(Lee et al. 2016)

• No! 

• Fix this by adding a global model score < 0 to the elements outside of the current 
span 

• This makes the estimated cost lower than the actual cost 

• Global model: tree LSTM over completed parse 

• This is significantly slower than the embedding LSTM, so first evaluate g(n), 
then lazily expand good scores



Estimating future costs 
Li et al., 2017)



A* search: benefits and 
drawbacks

• Benefits: 

• With heuristic, has nice optimality guarantees 

• Strong results in CCG parsing 

• Drawbacks: 

• Needs more construction than beam search, can’t 
easily throw on existing model 

• Requires a good heuristic for optimality guarantees



Actor Critic 
(Bahdanau et. al., 2017)

• Basic idea: 

• Use Neural Model as an actor that predicts 
actions (say, the next word) 

• Use a critic to predict final reward (in this case, 
BLEU) for MT models 

• Actor trained similarly to REINFORCE, critic 
trained with TD



Actor Critic (continued)

• T is the sequence, M in the set of examples, and a 
the potential next actions, Q reward

Actor:

Critic:

• C is a measure of reward over average reward 
similar to REINFORCE style algorithms



Other search 
algorithms



Particle Filters 
(Buys et al., 2015)

• Similar to beam search 

• Think of it as beam search with a width that depends on 
certainty of it’s paths 

• More certain, smaller, less certain, wider 

• There are k total particles 

• Divide particles among paths based off of probability of 
paths, dropping any path that would get <1 particle 

• Compare after the same number of Shifts



Reranking 
(Dyer et al. 2016)

• If you have multiple different models, using one to rerank outputs can 
improve performance 

• Classically: use a target language language model to rerank the best 
outputs from an MT system 

• Going back to the generative parsing problem, directly decoding from a 
generative model is difficult 

• However, if you have both a generative model B and a discriminative 
model A 

• Decode with A then rerank with B 

• Results are superior to decoding then reranking with a separately 
trained B



Questions?


