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The Semantic Parsing Task
Motivation how to represent the meaning of the sentence?
Task Parsing natural language utterances into formal meaning representations (MRs)

Meaning RepresentationNatural Language Utterance

Show me flights from Pittsburgh 
to Seattle

lambda $0 e (and (flight $0)     
(from $0 san_Francisco:ci) 
(to $0 seattle:ci))



The Semantic Parsing Task
Task-specific Meaning Representations designed for a specific task (e.g., question answering)
General-purpose Meaning Representations capture the semantics of natural language

Task-Specific
Meaning Representations

lambda $0 e (and (flight $0)     
(from $0 san_Francisco:ci) 
(to $0 seattle:ci))

Show me flights from Pittsburgh to Seattle

Task-specific Logical Form

General-Purpose 
Meaning Representations

The boy wants to go

(want-01
:arg0 (b / boy)
:arg1 (g / go-01))

Abstract Meaning Representation (AMR)

Example: Smart Personal Agent
Question Answering Systems

Example: AMR, Combinatory Categorical Grammar (CCG)



Workflow of a (Task-specific) Semantic Parser

User’s Natural Language Query

Show me flights from Pittsburgh to Seattle

Parsing to Meaning Representation

lambda $0 e (and (flight $0)     
(from $0 san_Francisco:ci) 
(to $0 seattle:ci))

Query Execution Execution Results (Answer)
1. AS 119
2. AA 3544 -> AS 1101
3. …

Build natural language interfaces to computers



Task-specific Semantic Parsing: Datasets
• Domain-specific Meaning Representations and Languages

– GEO Query, ATIS, JOBS
– WikiSQL, Spider
– IFTTT

• General-purpose Programming Languages
– HearthStone
– Django
– CONALA



GEO Query, ATIS, JOBS
• ATIS 5410 queries about flight booking
• GEO Query 880 queries about US geographical information
• JOBS 640 queries to a job database

GEO Query

argmax $0 
(state:t $0) 
(count $1 (and 

(river:t $1)     
(loc:t $1 $0)))

which state has the most rivers 
running through it?

Lambda Calculus Logical Form

JOBS

answer(
company(J,’microsoft’),
job(J),
not((req deg(J,’bscs’))))

what microsoft jobs do not 
require a bscs?

Prolog-style Program

ATIS

Lambda Calculus Logical Form

Show me flights from 
Pittsburgh to Seattle

lambda $0 e 
(and (flight $0)     
(from $0 pittsburgh:ci) 
(to $0 seattle:ci))



WikiSQL

• 80654 examples of Table, Question and Answer
• Context a small database table extracted from a Wikipedia article
• Target a SQL query

[Zhong et al., 2017]



IFTTT Dataset
• Over 70K user-generated task completion snippets crawled from ifttt.com
• Wide variety of topics: home automation, productivity, etc.
• Domain-Specific Language: IF-THIS-THEN-THAT structure, much simpler grammar

https://ifttt.com/applets/1p-autosave-
your-instagram-photos-to-dropbox

[Quirk et al., 2015]

IFTTT Natural Language Query
and Meaning Representation

IF Instagram.AnyNewPhotoByYou
THEN Dropbox.AddFileFromURL

Autosave your Instagram photos to 
Dropbox

Domain-Specific Programming Language

https://ifttt.com/applets/1p-autosave-your-instagram-photos-to-dropbox


HearthStone (HS) Card Dataset
• Description: properties/fields of an HearthStone card
• Target code: implementation as a Python class from HearthBreaker

<name> Divine Favor </name> 
<cost> 3 </cost> 
<desc> Draw cards until you have as many in hand as your opponent </desc>

[Ling et al., 2016]

Intent (Card Property)

Target Code (Python class)



Django Annotation Dataset 
• Description: manually annotated descriptions for 10K lines of code
• Target code: one liners
• Covers basic usage of Python like variable definition, function calling, string 

manipulation and exception handling

call the function _generator, join the result into a string, 
return the result

Intent

Target

[Oda et al., 2015]



The CONALA Code Generation Dataset

− 2,379 training and 500 test examples
− Manually annotated, high quality natural 

language queries
− Code is highly expressive and compositional
− Also ship with 600K extra mined examples!

Get a list of words `words` of a file 'myfile'

words = open('myfile').read().split()

Copy the content of file 'file.txt' to file 'file2.txt'

shutil.copy('file.txt’, 'file2.txt')

Check if all elements in list `mylist` are the same

len(set(mylist)) == 1

Create a key `key` if it does not exist in dict `dic` 
and append element `value` to value 

dic.setdefault(key, []).append(value)

conala-corpus.github.io

[Yin et al., 2018]



Learning Paradigms

Supervised Learning

Utterances with Labeled Meaning Representation

Weakly-supervised Learning

Utterances with Query Execution Results

Semi-supervised Learning

Learning with Labeled and Unlabeled Utterances



Learning Paradigm 1: Supervised Learning

User’s Natural Language Query

Show me flights from Pittsburgh to Seattle

Parsing to Meaning Representation

lambda $0 e (and (flight $0)     
(from $0 san_Francisco:ci) 
(to $0 seattle:ci))

Train a neural semantic parser with source natural language query and target meaning 
representations



Sequence-to-Sequence Learning with Attention

• Treat the target meaning representation as a sequence of surface tokens
• Reduce the task as another sequence-to-sequence learning problem

flight from Pittsburgh to Seattle

. . . . .

$0 elambda ( and )
Task-Specific

Meaning Representations

lambda $0 e (and (flight $0)     
(from $0 san_Francisco:ci) 
(to $0 seattle:ci))

Show me flights from Pittsburgh to Seattle

Task specific logical form

[Jia and Liang, 2016; Dong and Lapata, 2016]



Sequence-to-Sequence Learning with Attention
• Meaning Representations (e.g., a database query) have strong underlying 

structures!
• Issue Using vanilla seq2seq models ignore the rich structures of meaning 

representations

Task-Specific
Meaning Representations

lambda $0 e (and (flight $0)     
(from $0 san_Francisco:ci) 
(to $0 seattle:ci))

Show me flights from Pittsburgh to Seattle

Task specific logical form

Tree-structured Representation

[Jia and Liang, 2016; Dong and Lapata, 2016]



Structure-aware Decoding for Semantic Parsing
• Motivation utilize the rich syntactic structure of target meaning representations
• Seq2Tree Generate from top-down using hierarchical sequence-to-sequence model

• Sequence-to-tree Decoding Process
– Each level of a parse tree is a 

sequence of terminals and non-
terminals

– Use a LSTM decoder to generate the 
sequence

– For each non-terminal node, expand 
it using the LSTM decoder

lambda

$0 e and

> from

$01600:ti dallas:cideparture_time

$0

Show me flight from Dallas departing after 16:00

[Dong and Lapata, 2016]



Structure-aware Decoding (Cont’d)
• Coarse-to-Fine Decoding decode a coarse sketch of the target logical form first and then 

decode the full logical form conditioned on both the input query and the sketch
• Explicitly model the coarse global structure of the logical form, and use it to guide the parsing 

process

[Dong and Lapata, 2018]



Grammar/Syntax-driven Semantic Parsing
• Previously introduced methods only added structured components to the decoding 

model
• Meaning representations (e.g., Python) have strong underlying syntax
• How can we explicitly model the underlying syntax/grammar of the target meaning 

representations in the decoding process?

Abstract Syntax TreePython Abstract Grammar

sorted(my_list, reverse=True)

Call ⟼ expr[func] expr*[args] keyword*[keywords]

If ⟼ expr[test] stmt*[body] stmt*[orelse]

For ⟼ expr[target] expr*[iter] stmt*[body] 
stmt*[orelse]

FunctionDef ⟼ identifier[name] expr*[iter] 
stmt*[body]  stmt*[orelse]

expr ⟼ Name | Call Expr

Call

expr[func] expr*[args] keyword*[keywords]

Name

Name

erpr

str(my_list)

keyword

str(sorted)

....

[Yin and Neubig, 2017; Rabinovich et al., 2017]



Grammar/Syntax-driven Semantic Parsing
• Key idea: use the grammar of the target meaning representation (Python AST) as 

prior knowledge in a neural sequence-to-sequence model

Input Intent sort my_list in descending order

Generated AST

sorted(my_list, reverse=True)Surface Code 

(")

($)

% & ' : a seq2seq model with
prior syntactic information

Deterministic transformation
(using Python astor library)

(()

Expr

Call

expr[func] expr*[args] keyword*[keywords]

Name

Name

erpr

str(my_list)

keyword

str(sorted)
....

[Yin and Neubig, 2017; Rabinovich et al., 2017]



Grammar/Syntax-driven Semantic Parsing
• Factorize the generation story of an AST into sequential application of actions {"#}:

– ApplyRule[r]: apply a production rule % to the frontier node in the derivation
– GenToken[v]: append a token & (e.g., variable names, string literals) to a terminal

root "' root ⟼ Expr

Expr

expr[Value]

Call

expr[func] expr*[args] keyword*[keywords]

Name

str Name

erpr

str(my_list)

keyword

") Expr ⟼ expr[Value]

"* expr ⟼ Call

"+ Call ⟼ expr[func] expr*[args] 
keyword*[keywords]

",

"-

".

"/

expr ⟼ Name

Name ⟼ str

GenToken[sorted]

GenToken[</n>]

"0

"'1

"''

"')

"'*

expr* ⟼ expr

expr ⟼ Name

Name ⟼ str

GenToken[my_list]

GenToken[</n>]

"'+ keyword* ⟼ keyword

....

Derivation AST Action Sequence

23

23

ApplyRule

GenToken

Generated by a
recurrent neural
decoder

str(sorted)

....

sorted(my_list, reverse=True)



TranX: a General-Purpose Syntax-Driven Semantic Parser
• Support five different meaning representations: Python 2 & 3, SQL, lambda-

calculus, prolog

Sort my_list in descending order

stmt   FunctionDef(identifiler name,

expr   Call(expr func, expr* args,

Grammar Specification

 arguments args, stmt* body)
 Expr(expr value)

keyword* keywords)

Str(string id)

|

Name(identifier id)|
|

Input Utterance

ApplyConstr(Expr)

ApplyConstr(Call)

ApplyConstr(Name)

Transition System

. . .

GenToken(sorted)

Expr

Call

Name

sorted

Name

my_list

Keyword

Abstract Syntax Tree

. . .

[Yin and Neubig, 2018]
Open sourced at https://pcyin.me/tranX

https://github.com/pcyin/tranX


Side Note: Importance of Modeling Copying
• Modeling copying is very important for neural 

semantic parsers!
• Out-of-vocabulary entities (e.g., city names, date 

time) often appear in the input query
• Neural networks like to hallucinate entities not 

included in the input query J



Side Note: Importance of Modeling Copying
• Given a token v, marginalize over the probability of copying v from the input and

generating v from the close vocabulary

sort my_list in descending order

Pointer 
N
et

Softm
ax

...

Vocabulary

...

Softm
ax

Input Words

Generation

Copy from Input

Generation prob.

Copy prob.

Final probability:
marginalize over

the two paths

Expr

Call

expr[func] expr*[args] keyword*[keywords]

Name

Name

erpr

str(my_list)

keyword

str(sorted)

....

Derivation

[Gu et al, 2016]



Intent join app_config.path and string 'locale' into a file path, substitute it for localedir. 

Pred.

Intent self.plural is an lambda function with an argument n, which returns result of boolean
expression n not equal to integer 1

Pred.

Ref.

Intent <name> Burly Rockjaw Trogg </name> <cost> 5 </cost> <attack> 3 </attack>   
<defense> 5 </defense> <desc> Whenever your opponent casts a spell, gain 2 Attack. 
</desc> <rarity> Common </rarity> ...

Ref.

Importance of Modeling Copying: Examples

tokens copied from input
[Yin and Neubig, 2017]



Data Collection is CostlySupervised Parsers are Data Hungry

Supervised Learning: the Data Inefficiency Issue

Purely supervised neural semantic 
parsing models require large 
amounts of training data

Copy the content of file 'file.txt' to file 'file2.txt'
shutil.copy('file.txt','file2.txt')

Get a list of words `words` of a file 'myfile'
words = open('myfile').read().split()

Check if all elements in list `mylist` are the same
len(set(mylist)) == 1

Collecting parallel training 

data costs           and 

*Examples from conala-corpus.github.io [Yin et al., 2018]

1700 USD for <3K Python code generation examples



Learning Paradigm 2: Weakly-supervised Learning

User’s Natural Language Query

Show me flights from Pittsburgh to Seattle

Parsing to Meaning Representation

lambda $0 e (and (flight $0)     
(from $0 san_Francisco:ci) 
(to $0 seattle:ci))

Query Execution Execution Results (Answer)
1. AS 119
2. AA 3544 -> AS 1101
3. …

Train a semantic parser using natural language query and the execution results
(a.k.a. Semantic Parsing with Execution)

Weak supervision signal

As unobserved 
latent variable

[Clarke et al., 2010; Liang et al., 2011] 



Weakly-supervised Parsing as Reinforcement Learning

What is the most populous city in United States?

argmax(λx.city(x)∧located(x,US), λx.population(x))

New York

NL question

Sampled Logical From
(Lambda DCS, Liang 2011)

Answer
(with rewards)

Semantic Parsing

Query Execution

argmax(λx.city(x)∧loc(x,US), λx.GDP(x))
argmax(λx.city(x), λx.population(x))

…

Tokyo

New York

!"
!#
!$

%"
%#
%$

p(y⇤ = New York) = p(y1|x) + p(y3|x)

Optimize Objective

Gradient Updates



Learning Objective: Marginalizing Over Candidate Queries 

w(z,x) =
p✓(z|x)P

z0:answer(z0=y⇤) p✓(z
0|x)where

• Intuitively, the gradient from each candidate logical form is weighted by its normalized 
probability. The more likely the query is, the higher its weight

What is the most populous city in United States?

argmax(λx.city(x)∧located(x,US), λx.population(x))

Semantic Parsing

argmax(λx.city(x)∧loc(x,US), λx.GDP(x))

!"
!#

Reward

Gold Answer Candidate Logical Form

r log p✓(y
⇤|x) =

X

z:answer(z)=y⇤

w(z,x) ·r log p✓(z|x)



Weakly-supervised Learning Issue 1: Spurious Logical Forms
• Spurious Queries: queries that have the correct execution result, but are 

semantically wrong

What is the most populous city in United States?

argmax(λx.city(x)∧located(x,US), λx.population(x))Correct

Semantic Parsing

argmax(λx.city(x)∧loc(x,US), λx.GDP(x))

!"
!#Spurious

• Solutions: 
– Encourage diversity in gradient updates by updating different hypotheses with roughly 

equal weights (Guu et al., 2017)
– Use prior lexical knowledge to promote promising hypotheses. E.g., populous has strong 

association with λx.population(x) (Misra et al., 2018)

Reward



Weakly-supervised Learning Issue 2: Search Space
• The space of possible logical forms with correct answers is exponentially large
• Key Issue logical forms are symbolic and indifferentiable
• How to search candidate logical forms more efficiently?

Prohibitively Large 
Search Space

r log p✓(y
⇤|x) =

X

z:answer(z)=y⇤

w(z,x) ·r log p✓(z|x)



Efficient Search: Single Step Reward Observation

Factorize the reward into each single time step (a.k.a., reward shaping)

argmax       λx.city(x)     ∧   located(x,China) λx.population(x)

Reward=0

Reward=0

What is the most populous city in United States?

[Suhr and Artzi, 2018] 



Efficient Search: Cache High-rewarding Queries

• Use a memory buffer to cache high-rewarding queries sampled so far
• During training, bias towards high-rewarding queries in the memory buffer

[Liang et al., 2018] 



Learning Paradigm 3: Semi-supervised Learning

Natural Language Query

Show me flights from Pittsburgh to Seattle

Labeled Meaning Representation

lambda $0 e (and (flight $0)     
(from $0 san_Francisco:ci) 
(to $0 seattle:ci))

Learning with  
− Limited amounts of labeled natural language query and meaning representation
− Relatively large amounts of unlabeled natural language query

Unlabeled Natural Language Query

Show me flights from Pittsburgh to Seattle

Parsing to Meaning Representation

lambda $0 e (and (flight $0)     
(from $0 san_Francisco:ci) 
(to $0 seattle:ci))

As unobserved 
latent variable



Learning with Labeled and Unlabeled Utterances

Limited Amount of Labeled Data

Sort my_list in descending order

sorted(my_list, reverse=True)

Copy the content of file 'file.txt' to file 
'file2.txt'
shutil.copy('file.txt',

'file2.txt')

Check if all elements in list `mylist` are 
the same

len(set(mylist)) == 1

Extra Unlabeled Utterances*

Get a list of words `words` of a file 'myfile'

Convert a list of integers into a single integer

Format a datetime object `when` to extract 
date only

Swap values in a tuple/list in list `mylist`

BeautifulSoup search string 'Elsie' inside tag 
'a'

Convert string to lowercase

[Kočiský et al., 2016]*Examples from conala-corpus.github.io



Programs as Tree-structured Latent Variables

Sort my_list in descending order

Structured Latent Semantic Space

Latent Meaning Representation
(Abstract Syntax Trees)

Prior

p( )

Inference Model

q�( | )

Reconstruction Model

p✓( | )

sorted(my_list, reverse=True)

Posterior inference 
corresponds to se-
mantic parsing J

[Yin et al., 2018]



Semi-supervised Learning with STRUCTVAE

p(        ) ≈ ∫ p(         |        ) p(        ) 

Supervised Objective

( ,        ) ∈ Labeled Data

X
log q�( | )

Sort my_list in descending order

Structured Latent Semantic Space

Prior

p( )

Inference Model

q�( | )

Reconstruction Model

p✓( | )

Labeled Data {        ,        }

Unlabeled Data {         }

Unsupervised Objective

∈ Unlabeled Data

X
log p( )



Conclusion 1: Pipeline of a Semantic Parser

User’s Natural Language Query

Show me flights from Pittsburgh to Seattle

Parsing to Meaning Representation

lambda $0 e (and (flight $0)     
(from $0 san_Francisco:ci) 
(to $0 seattle:ci))

Query Execution Execution Results (Answer)
1. AS 119
2. AA 3544 -> AS 1101
3. …



Conclusion 2: Three Learning Paradigms

Supervised Learning

Utterances with Labeled Meaning Representation

Weakly-supervised Learning

Utterances with Query Execution Results

Semi-supervised Learning

Learning with Labeled and Unlabeled Utterances



Challenge: Natural Language is Highly Compositional 

• Sometimes even a short NL phrase/clause has complex structured grounding

James K. Polk

government_position

government_position

President

1845

1849

Governor

1839

1841

titl
e
from

to

titl
e

from
to

SELECT ?job_title.
FROM Freebase
WHERE{

James K. Polk  government_position ?job.
?job           title          ?job_title.

?job           to               ?to_date.

FILTER(?to_date < (
SELECT ?start_date.
WHERE{

James K. Polk government_position ?job1.
?job1         title           President.
?job1         from          ?start_date.

}
))

}

!: what was James K. Polk before he was president?

Meaning Representation in SPARQL Query

[Yin et al., 2015]



Challenge: Scale to Open-domain Knowledge
• Most existing works focus on parsing natural language to queries to structured, 

curated knowledge bases
• Most of the world’s knowledge has unstructured, textual form!

– Machine Reading Comprehension tasks (e.g., SQUAD) use textual knowledge

User’s Natural Language Query

Show me flights from Pittsburgh to Seattle

Parsing to Meaning Representation

lambda $0 e (and (flight $0)     
(from $0 san_Francisco:ci) 
(to $0 seattle:ci))

Query Execution Execution Results (Answer)
1. AS 119
2. AA 3544 -> AS 1101
3. …

Textual Knowledge (e.g., 
Wikipedia Articles)

How to design MRs that 
can be used to query 
textual knowledge?



Final Notes: Challenges

Breadth of Domains

Depth of Semantic Compositionality

Task-specific Systems

and Datasets (ATIS)

Query Large Scale KB

Reading Comprehension?

Web Search

???

(Figure taken from Pasupat and Liang, 2015)


