CS11-747 Neural Networks for NLP Debugging Neural Networks for NLP

Graham Neubig

Carnegie Mellon University

Language Technologies Institute

Site <u>https://phontron.com/class/nn4nlp2019/</u>

In Neural Networks, Tuning is Paramount!

- Everything is a hyperparameter
 - Network size/depth
 - Small model variations
 - Minibatch creation strategy
 - Optimizer/learning rate
- Models are complicated and opaque, debugging can be difficult!

Understanding Your Problem

A Typical Situation

- You've implemented a nice model
- You've looked at the code, and it looks OK
- Your accuracy on the test set is bad
- What do I do?

Possible Causes

• Training time problems

- Lack of model capacity
- Inability to train model properly
- Training time bug
- Decoding time bugs
 - Disconnect between test and decoding
 - Failure of search algorithm
- Overfitting
- Mismatch between optimized function and eval

Debugging at Training Time

Identifying Training Time Problems

- Look at the loss function calculated on the training set
 - Is the loss function going down?
 - Is it going down basically to zero if you run training long enough (e.g. 20-30 epochs)?
- If not, you have a training problem

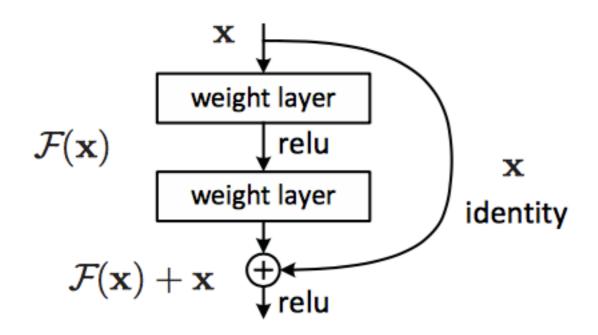
Is My Model Too Weak?

- Your model needs to be big enough to learn
- Model size depends on task
 - For language modeling, at least 512 nodes
 - For natural language analysis, 128 or so may do
- Multiple layers are often better
- For long sequences (e.g. characters) may need larger layers

Be Careful of Deep Models

- Extra layers can help, but can also hurt if you're not careful due to vanishing gradients
- Solutions:

Residual Connections (He et al. 2015)



 $\mathbf{y} = H(\mathbf{x}, \mathbf{W}_{\mathbf{H}}) \cdot T(\mathbf{x}, \mathbf{W}_{\mathbf{T}}) + \mathbf{x} \cdot (1 - T(\mathbf{x}, \mathbf{W}_{\mathbf{T}}))$

Trouble w/ Optimization

- If increasing model size doesn't help, you may have an optimization problem
- Possible causes:
 - Bad optimizer
 - Bad learning rate
 - Bad initialization
 - Bad minibatching strategy

Reminder: Optimizers

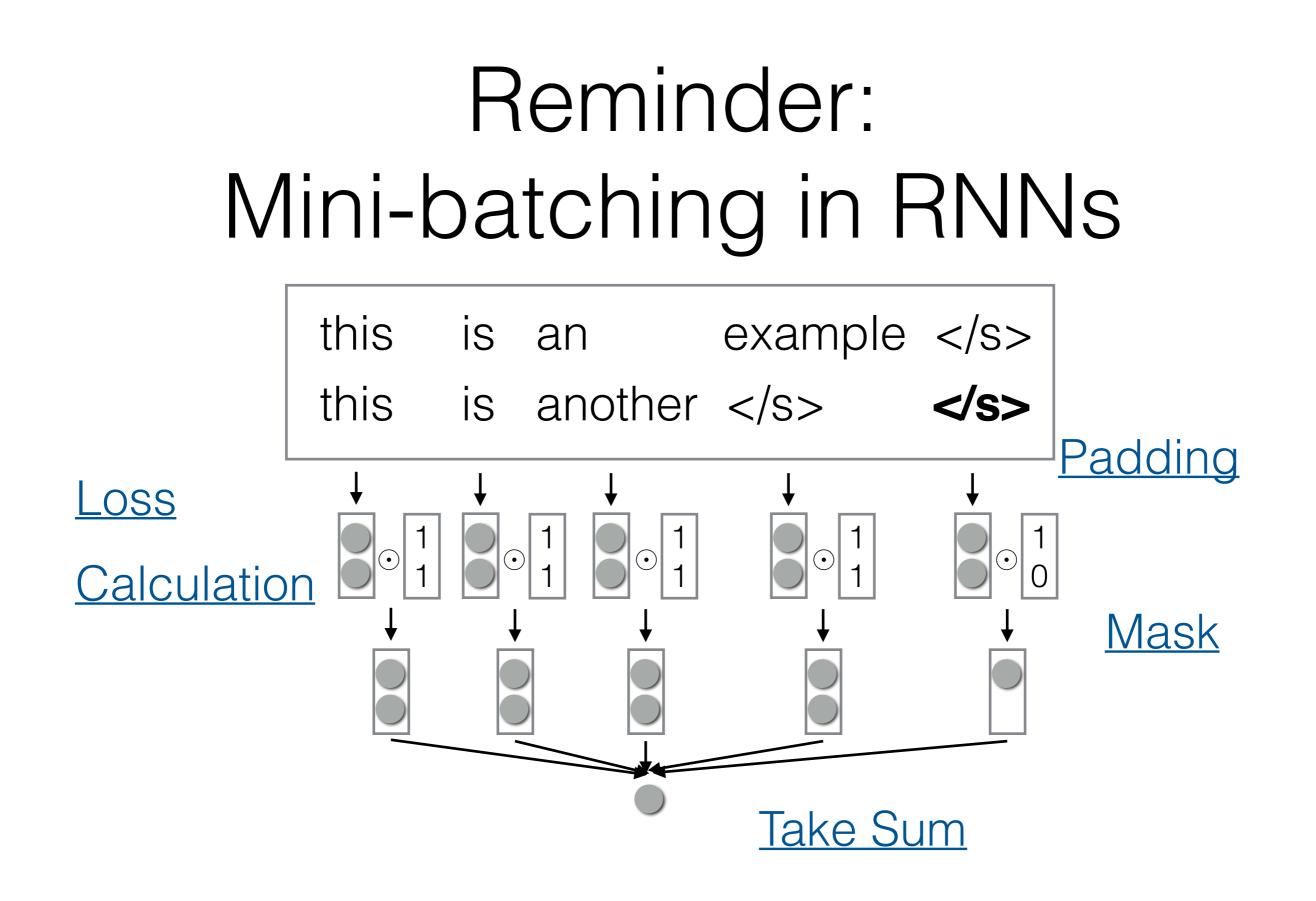
- **SGD:** take a step in the direction of the gradient
- **SGD with Momentum:** Remember gradients from past time steps to prevent sudden changes
- Adagrad: Adapt the learning rate to reduce learning rate for frequently updated parameters (as measured by the variance of the gradient)
- Adam: Like Adagrad, but keeps a running average of momentum and gradient variance
- **Many others:** RMSProp, Adadelta, etc. (See Ruder 2016 reference for more details)

Learning Rate

- Learning rate is an important parameter
 - Too low: will not learn or learn vey slowly
 - Too high: will learn for a while, then fluctuate and diverge
- **Common strategy:** start from an initial learning rate then gradually decrease
- Note: need a different learning rate for each optimizer! (SGD default is 0.1, Adam 0.001)

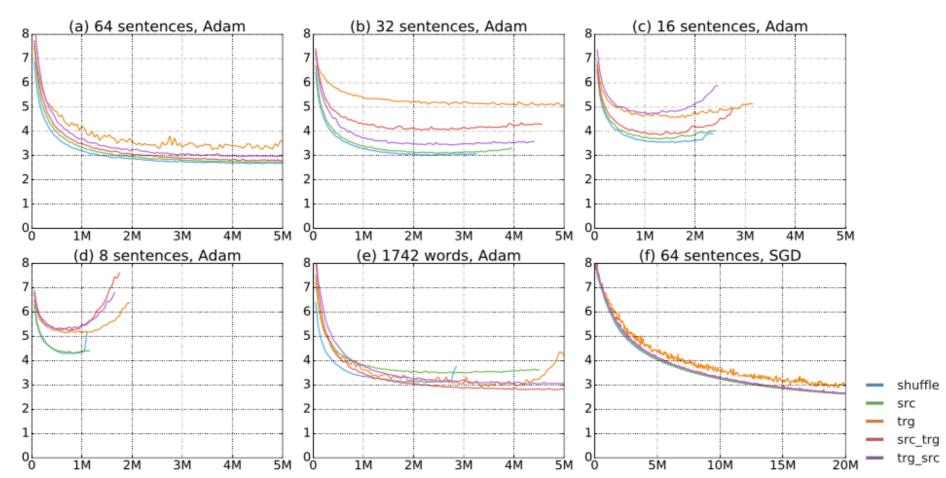
Initialization

- Neural nets are sensitive to initialization, which results in different sized gradients
- Standard initialization methods:
 - Gaussian initialization: initialize with a zero-mean Gaussian distribution
 - **Uniform range initialization:** simply initialize uniformly within a range
 - Glorot initialization, He initialization: initialize in a uniform manner, where the range is specified according to net size
- Latter is common/default, but read prior work carefully



Bucketing/Sorting

- If we use sentences of different lengths, too much padding and sorting can result in slow training
- To remedy this: **sort sentences** so similarly-lengthed sentences are in the same batch
- But this can affect performance! (Morishita et al. 2017)



Debugging at Decoding Time

Training/Decoding Disconnects

- Usually your loss calculation and decoding will be implemented in different functions
- e.g. enc_dec.py example from this class has calc_loss() and generate() functions
- Like all software engineering: duplicated code is a source of bugs!
- Also, usually loss calculation is minibatched, generation not.

Debugging Minibatching

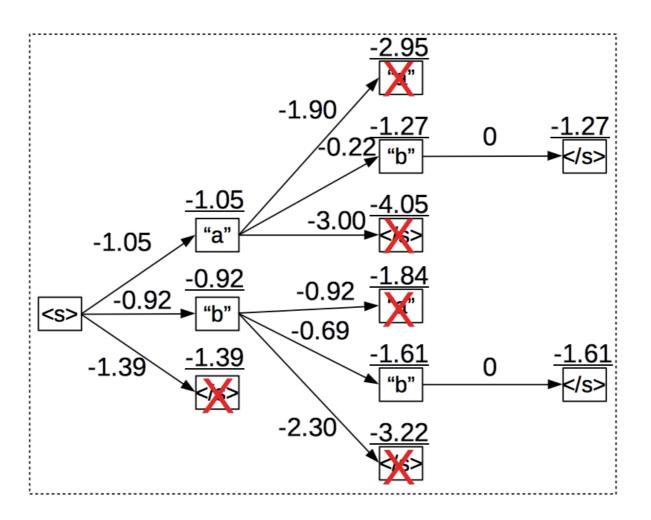
- Debugging mini-batched loss calculation
 - Calculate loss with large batch size (e.g. 32)
 - Calculate loss for each sentence individually and sum them
 - The values should be the same (modulo numerical precision)
- Create a unit test that tests this!

Debugging Decoding

- Your decoding code should get the same score as loss calculation
- Test this:
 - Calculate loss of reference
 - Perform **forced decoding**, where you decode, but tell your model the reference word at each time step
 - The score of these two should be the same
- Create a unit test doing this!

Beam Search

 Instead of picking one high-probability word, maintain several paths



• More in a later class

Debugging Search

- As you make search better, the model score should get better (almost all the time)
- Run search with varying beam sizes and make sure you get a better overall model score with larger sizes
- Create a unit test testing this!

Look At Your Data!

- Decoding problems can often be detected by looking at outputs and realizing something is wrong
- e.g. The first word of the sentence is dropped every time
 - > went to the store yesterday
 - > bought a dog
- e.g. our system was <unk>ing University of Nebraska at Kearney

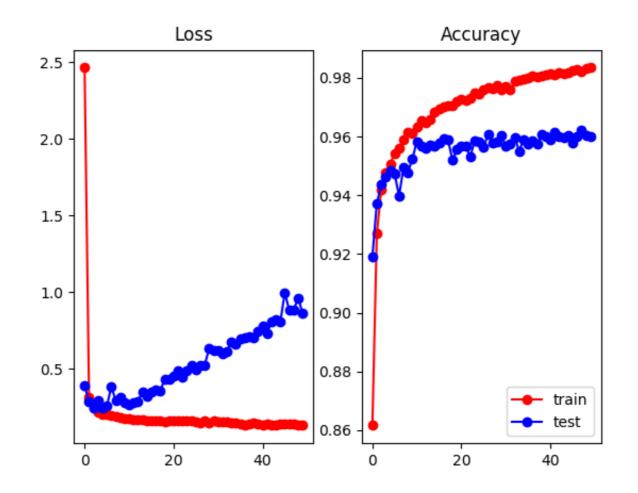
Quantitative Analysis

- Measure gains quantitatively. What is the phenomenon you chose to focus on? Is that phenomenon getting better?
 - You focused on low-frequency words: is accuracy on low frequency words increasing?
 - You focused on syntax: is syntax or word ordering getting better, are you doing better on long-distance dependencies?
 - You focused on search: are you reducing the number of search errors?

Battling Overfitting

Symptoms of Overfitting

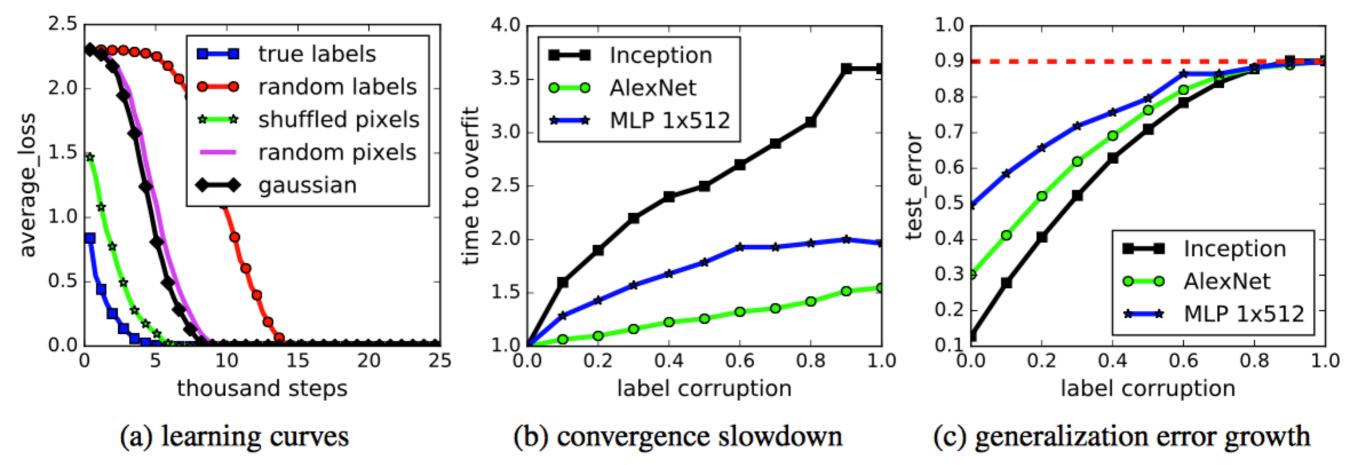
• Training loss converges well, but test loss diverges



• No need to look at accuracy, only loss! Accuracy is a symptom of a different problem.

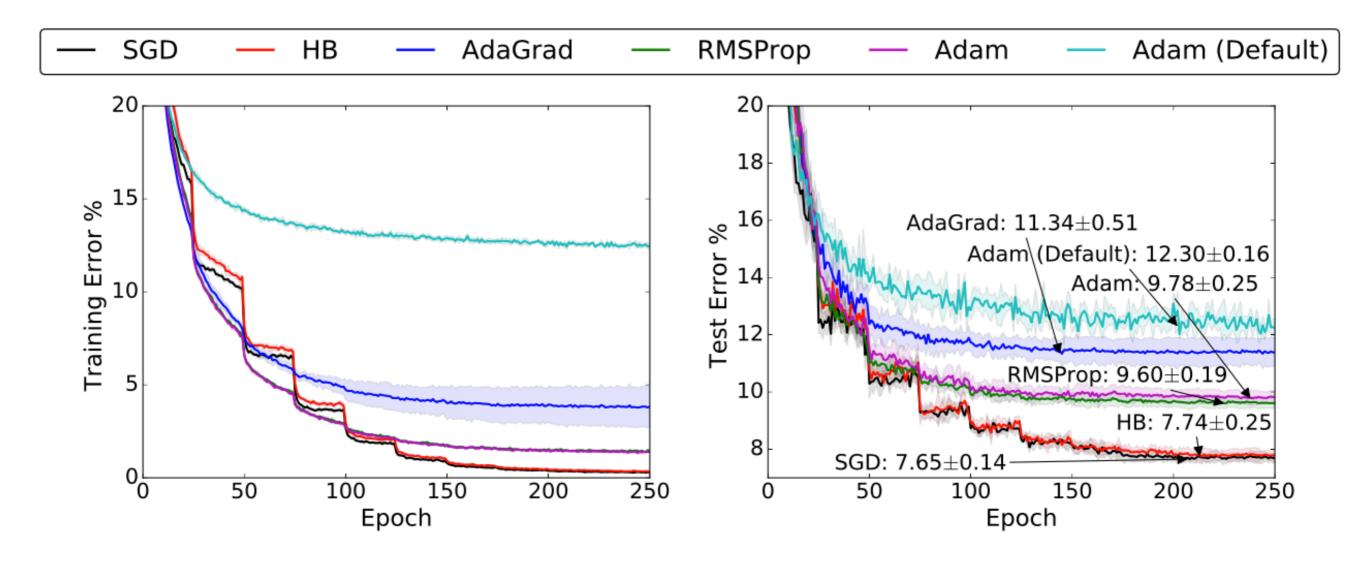
Your Neural Net can Memorize your Training Data (Zhang et al. 2017)

- Your neural network has more parameters than training examples
- If you randomly shuffle the training labels (there is no correlation b/t input and labels), it can still learn



Optimizers: Adaptive Gradient Methods Tend to Overfit More (Wilson et al. 2017)

 Adaptive gradient methods are fast, but have a stronger tendency to overfit on small data

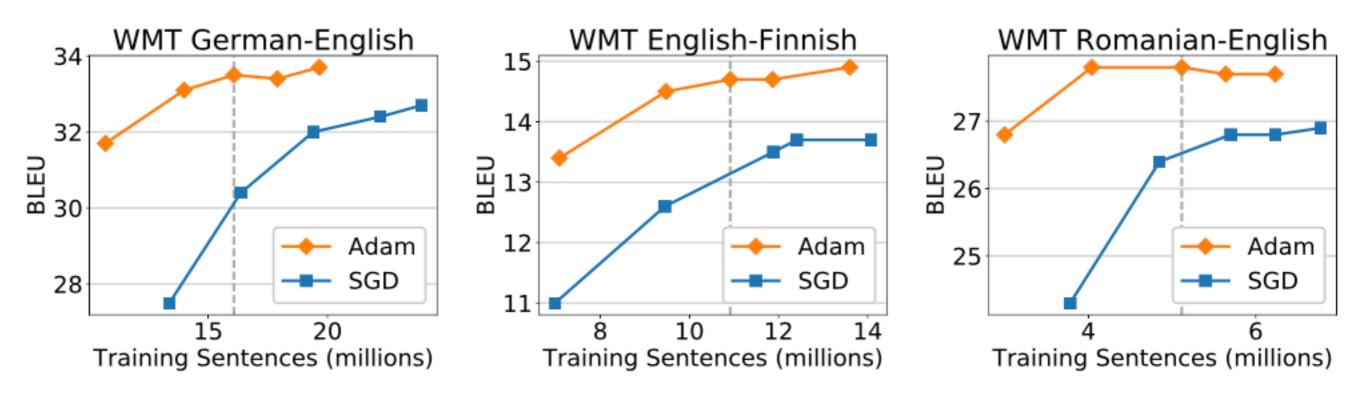


Reminder: Early Stopping, Learning Rate Decay

- Neural nets have tons of parameters: we want to prevent them from over-fitting
- We can do this by monitoring our performance on held-out development data and stopping training when it starts to get worse
- It also sometimes helps to reduce the learning rate and continue training

Reminder: Dev-driven Learning Rate Decay

- Start w/ a high learning rate, then degrade learning rate when start overfitting the development set (the "newbob" learning rate schedule)
- Adam w/ Learning rate decay does relatively well for MT (Denkowski and Neubig 2017)



Reminder: Dropout

(Srivastava et al. 2014)

- Neural nets have lots of parameters, and are prone to overfitting
- Dropout: randomly zero-out nodes in the hidden layer with probability p at training time only

- Because the number of nodes at training/test is different, scaling is necessary:
 - Standard dropout: scale by *p* at test time
 - Inverted dropout: scale by 1/(1-p) at training time

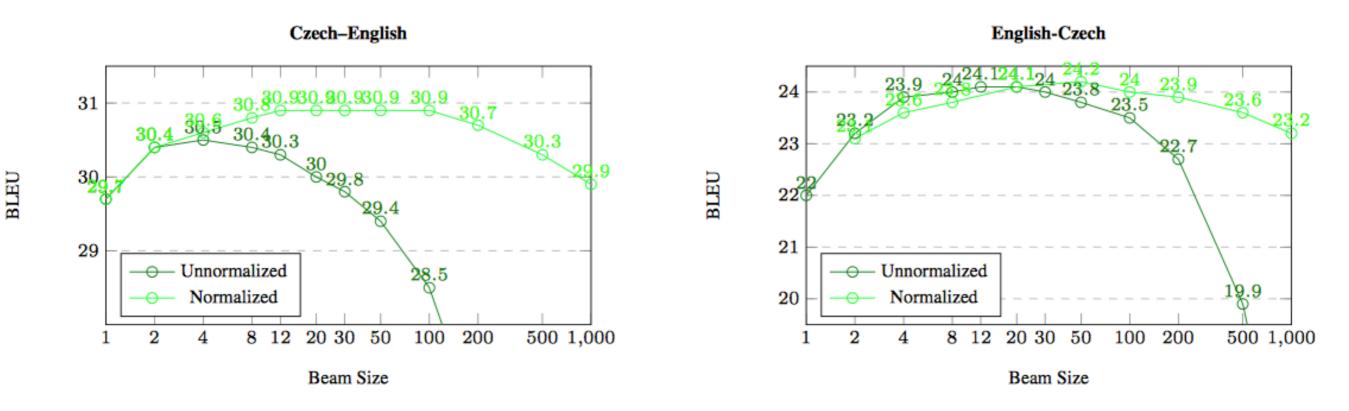
Mismatch b/t Optimized Function and Evaluation Metric

Loss Function, Evaluation Metric

- It is very common to optimize for maximum likelihood for training
- But even though likelihood is getting better, accuracy can get worse

A Stark Example (Koehn and Knowles 2017)

 Better search (=better model score) can result in worse BLEU score!



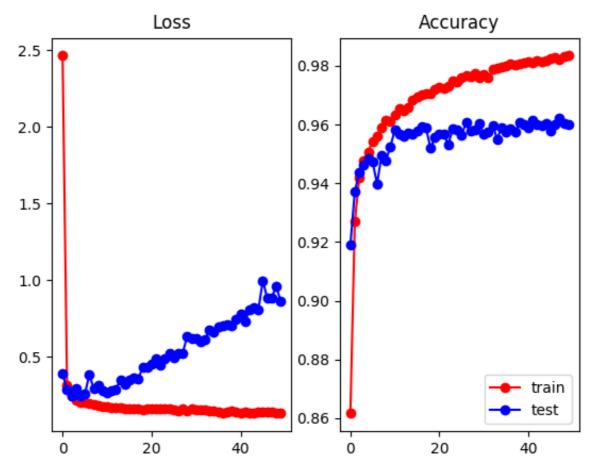
 Why? Shorter sentences have higher likelihood, better search finds them, but BLEU likes correct-length sentences.

Managing Loss Function/ Eval Metric Differences

- Most principled way: use structured prediction techniques to be discussed in future classes
 - Structured max-margin training
 - Minimum risk training
 - Reinforcement learning
 - Reward augmented maximum likelihood

A Simple Method: Early Stopping w/ Eval Metric

 Remember this graph: difference between number of iterations for best loss vs. best eval



• Why?: Over-confident predictions hurt loss.

• Solution: perform early stopping based on accuracy

Final Words

Reproducing Previous Work

- Reproducing previous work is hard because everything is a hyper-parameter
- If code is released, find and reduce the differences one by one
- If code is not released, try your best
- Feel free to contact authors about details, they will usually respond!

Questions?