CS11-747 Neural Networks for NLP Sentence and Contextualised Word Representations

Graham Neubig

Carnegie Mellon University

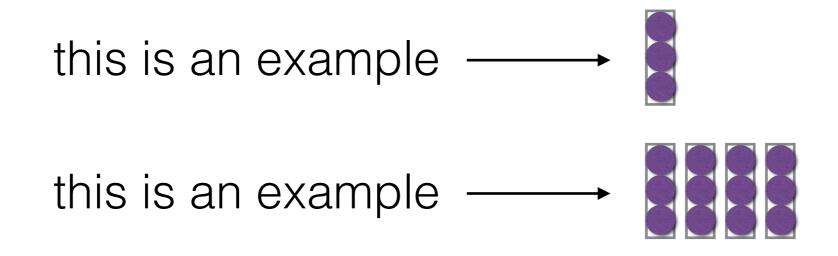
Language Technologies Institute

Site <u>https://phontron.com/class/nn4nlp2019/</u>

(w/ slides by Antonis Anastasopoulos)

Sentence Representations

• We can create a vector or sequence of vectors from a sentence



Obligatory Quote!

"You can't cram the meaning of a whole %&!\$ing sentence into a single \$&!*ing vector!" — Ray Mooney

Goal for Today

- Briefly Introduce tasks, datasets and methods
- Introduce different training objectives
- Talk about multitask/transfer learning

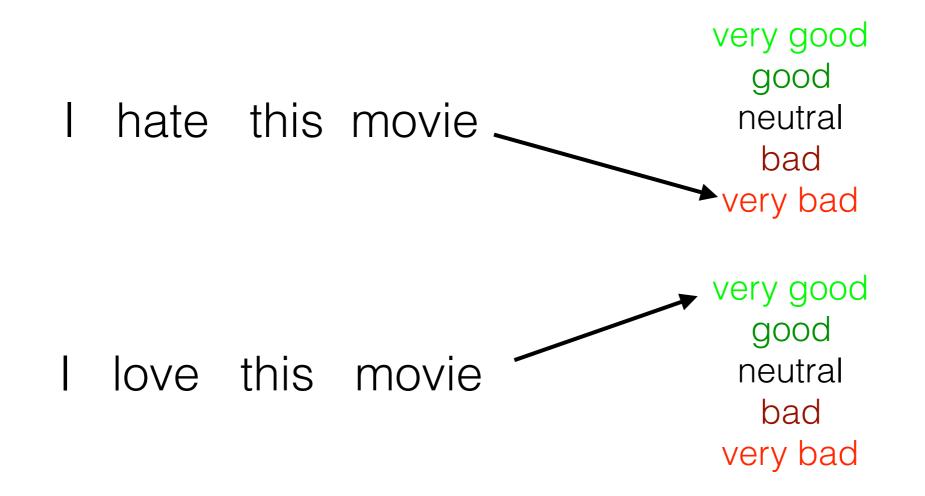
Tasks Using Sentence Representations

Where would we need/use Sentence Representations?

- Sentence Classification
- Paraphrase Identification
- Semantic Similarity
- Entailment
- Retrieval

Sentence Classification

- Classify sentences according to various traits
- Topic, sentiment, subjectivity/objectivity, etc.



Paraphrase Identification (Dolan and Brockett 2005)

• Identify whether A and B mean the same thing

Charles O. Prince, 53, was named as Mr. Weill's successor. Mr. Weill's longtime confidant, Charles O. Prince, 53, was named as his successor.

 Note: exactly the same thing is too restrictive, so use a loose sense of similarity

Semantic Similarity/Relatedness (Marelli et al. 2014)

• Do two sentences mean something similar?

Relatedness score	Example
1.6	A: "A man is jumping into an empty pool" B: "There is no biker jumping in the gir"
	B: "There is no biker jumping in the air"
2.9	A: "Two children are lying in the snow and are making snow angels" B: "Two angels are making snow on the lying children"
3.6	A: "The young boys are playing outdoors and the man is smiling nearby" B: "There is no boy playing outdoors and there is no man smiling"
4.9	A: "A person in a black jacket is doing tricks on a motorbike" B: "A man in a black jacket is doing tricks on a motorbike"

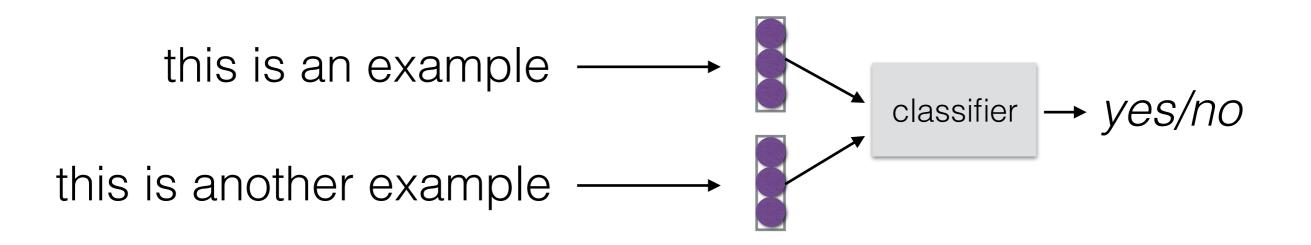
• Like paraphrase identification, but with shades of gray.

Textual Entailment (Dagan et al. 2006, Marelli et al. 2014)

- Entailment: if A is true, then B is true (c.f. paraphrase, where opposite is also true)
 - The woman bought a sandwich for lunch
 → The woman bought lunch
- Contradiction: if A is true, then B is not true
 - The woman bought a sandwich for lunch
 → The woman did not buy a sandwich
- Neutral: cannot say either of the above
 - The woman bought a sandwich for lunch
 → The woman bought a sandwich for dinner

Model for Sentence Pair Processing

- Calculate vector representation
- Feed vector representation into classifier



How do we get such a representation?

Multi-task Learning Overview

Types of Learning

- Multi-task learning is a general term for training on multiple tasks
- **Transfer learning** is a type of multi-task learning where we only really care about one of the tasks
- Domain adaptation is a type of transfer learning, where the output is the same, but we want to handle different topics or genres, etc.

Plethora of Tasks in NLP

- In NLP, there are a plethora of tasks, each requiring different varieties of data
 - Only text: e.g. language modeling
 - Naturally occurring data: e.g. machine translation
 - Hand-labeled data: e.g. most analysis tasks
- And each in many languages, many domains!

Rule of Thumb 1: Multitask to Increase Data

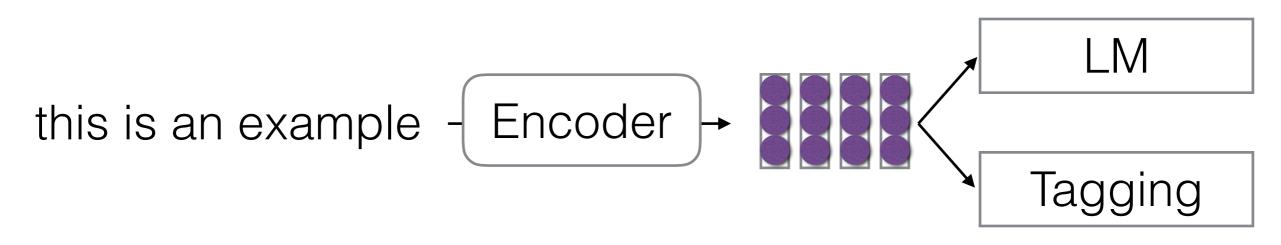
- Perform multi-tasking when one of your two tasks has many fewer data
- General domain → specific domain
 (e.g. web text → medical text)
- High-resourced language → low-resourced language
 (e.g. English → Telugu)
- Plain text → labeled text
 (e.g. LM -> parser)

Rule of Thumb 2:

- Perform multi-tasking when your tasks are related
- e.g. predicting eye gaze and summarization (Klerke et al. 2016)

Standard Multi-task Learning

Train representations to do well on multiple tasks at once



- In general, as simple as randomly choosing minibatch from one of multiple tasks
- Many many examples, starting with Collobert and Weston (2011)

Pre-training

• First train on one task, then train on another

- Widely used in word embeddings (Turian et al. 2010)
- Also pre-training sentence encoders or contextualized word representations (Dai et al. 2015, Melamud et al. 2016)

Thinking about Multi-tasking, and Pre-trained Representations

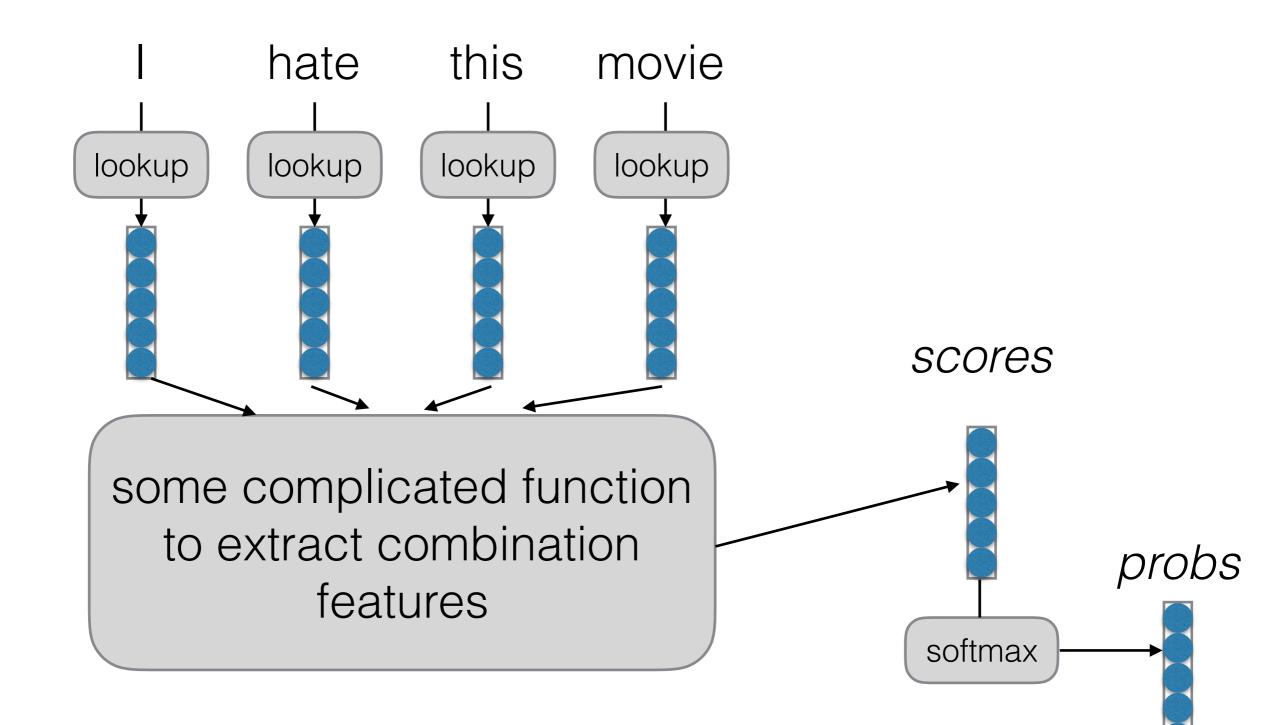
- Many methods have names like SkipThought, ParaNMT, CoVe, ELMo, BERT along with pre-trained models
- These often refer to a combination of
 - Model: The underlying neural network architecture
 - Training Objective: What objective is used to pretrain
 - Data: What data the authors chose to use to train the model
- Remember that these are often conflated (and don't need to be)!

End-to-end vs. Pre-training

- For any model, we can always use an end-to-end training objective
 - **Problem:** paucity of training data
 - **Problem:** weak feedback from end of sentence only for text classification, etc.
- Often better to pre-train sentence embeddings on other task, then use or fine tune on target task

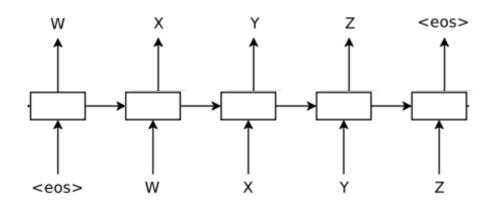
Training Sentence Representations

General Model Overview



Language Model Transfer (Dai and Le 2015)

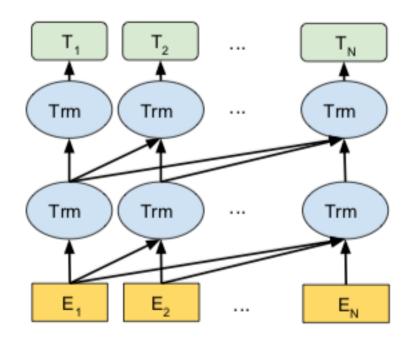
- Model: LSTM
- Objective: Language modeling objective
- **Data:** Classification data itself, or Amazon reviews



• **Downstream:** On text classification, initialize weights and continue training

Unidirectional Training + Transformer (OpenAl GPT) (Radford et al. 2018)

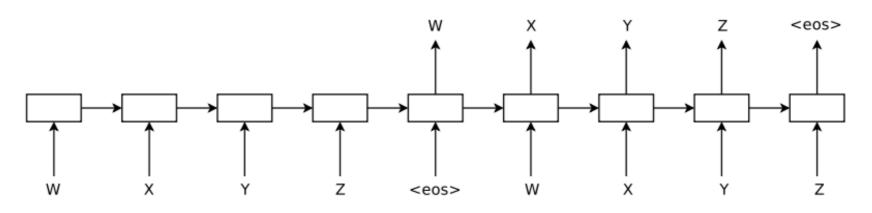
- Model: Masked self-attention
- **Objective:** Predict the next word left->right
- **Data:** BooksCorpus



Downstream: Some task fine-tuning, other tasks additional multi-sentence training

Auto-encoder Transfer (Dai and Le 2015)

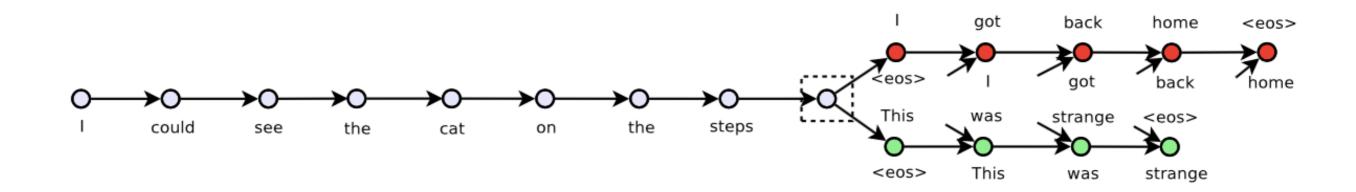
- Model: LSTM
- Objective: From single sentence vector, reconstruct the sentence
- Data: Classification data itself, or Amazon reviews



• **Downstream:** On text classification, initialize weights and continue training

Context Prediction Transfer (Skip-thought Vectors) (Kiros et al. 2015)

- Model: LSTM
- **Objective:** Predict the surrounding sentences
- Data: Books, important because of context



• **Downstream Usage:** Train logistic regression on [|u-v|; u*v] (component-wise)

Paraphrase ID Transfer (Wieting et al. 2015)

- Model: Try many different ones
- Objective: Predict whether two phrases are paraphrases or not from
- Data: Paraphrase database (<u>http://</u> paraphrase.org), created from bilingual data
- Downstream Usage: Sentence similarity, classification, etc.
- Result: Interestingly, LSTMs work well on indomain data, but word averaging generalizes better

Large Scale Paraphrase Data (ParaNMT-50MT) (Wieting and Gimpel 2018)

- Automatic construction of large paraphrase DB
 - Get large parallel corpus (English-Czech)
 - Translate the Czech side using a SOTA NMT system
 - Get automated score and annotate a sample
- Corpus is huge but includes noise, 50M sentences (about 30M are high quality)
- Trained representations work quite well and generalize

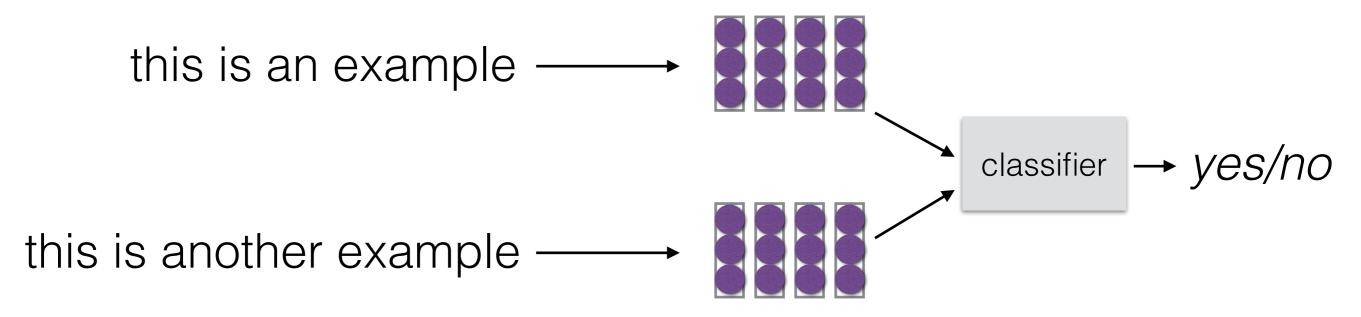
Entailment Transfer (InferSent) (Conneau et al. 2017)

- Previous objectives use no human labels, but what if:
- **Objective:** supervised training for a task such as entailment learn generalizable embeddings?
 - Task is more difficult and requires capturing nuance → yes?, or data is much smaller → no?
- **Model:** Bi-LSTM + max pooling
- Data: Stanford NLI, MultiNLI
- Results: Tends to be better than unsupervised objectives such as SkipThought

Contextualized Word Representations

Contextualized Word Representations

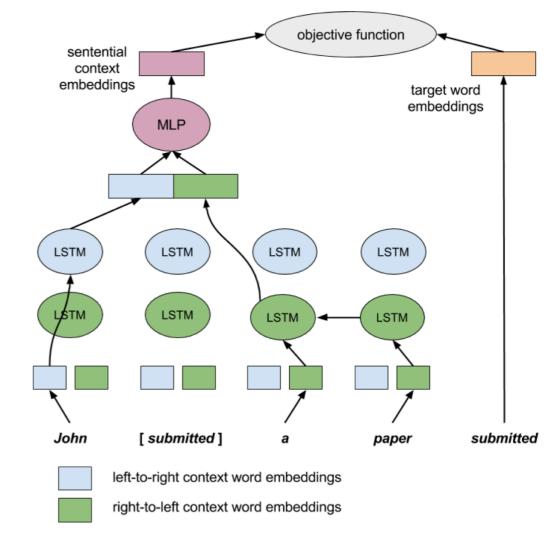
 Instead of one vector per sentence, one vector per word!



How to train this representation?

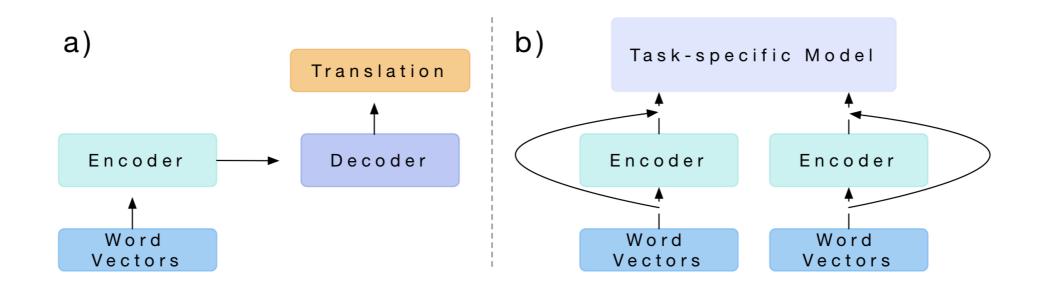
Central Word Prediction Objective (context2vec) (Melamud et al. 2016)

- Model: Bi-directional LSTM
- **Objective:** Predict the word given context
- **Data:** 2B word ukWaC corpus
- Downstream: use vectors for sentence completion, word sense disambiguation, etc.



Machine Translation Objective (CoVe) (McMann et al. 2017)

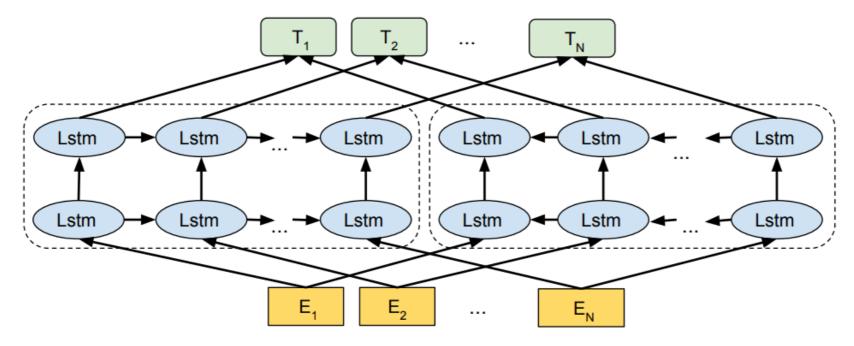
- **Model:** Multi-layer bi-directional LSTM
- **Objective:** Train attentional encoder-decoder
- Data: 7M English-German sentence pairs



Downstream: Use bi-attention network over sentence pairs for classification

Bi-directional Language Modeling Objective (ELMo) (Peters et al. 2018)

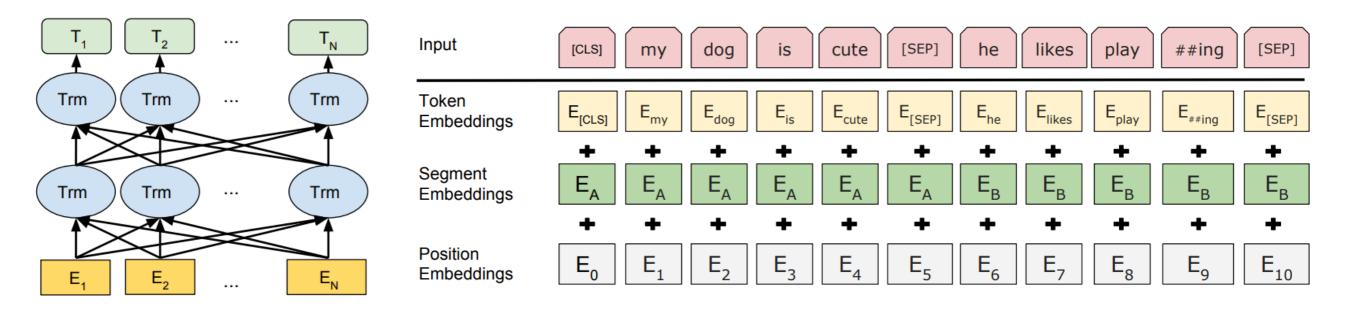
- **Model:** Multi-layer bi-directional LSTM
- Objective: Predict the next word left->right, next word right->left independently
- Data: 1B word benchmark LM dataset



Downstream: Finetune the weights of the linear combination of layers on the downstream task

Masked Word Prediction (BERT) (Devlin et al. 2018)

• **Model:** Multi-layer self-attention. Input sentence or pair, w/ [CLS] token, subword representation



- Objective: Masked word prediction + nextsentence prediction
- Data: BooksCorpus + English Wikipedia

Masked Word Prediction (Devlin et al. 2018)

- 1. predict a masked word
 - 80%: substitute input word with [MASK]
 - 10%: substitute input word with random word
 - 10%: no change
- Like context2vec, but better suited for multi-layer self attention

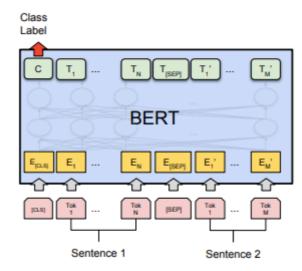
Consecutive Sentence Prediction (Devlin et al. 2018)

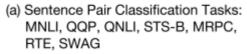
- 1. classify two sentences as consecutive or not:
 - 50% of training data (from OpenBooks) is "consecutive"

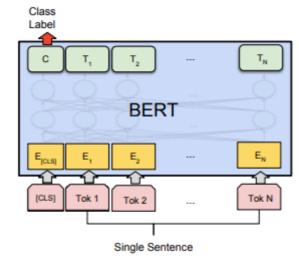
Input = [CLS] the man [MASK] to the store [SEP] Input = [CLS] the man went to [MASK] store [SEP]
penguin [MASK] are flight ##less birds [SEP] he bought a gallon [MASK] milk [SEP]
Label = NotNext Label = IsNext

Using BERT with pre-training/finetuning

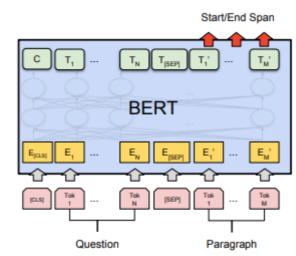
 Use the pre-trained model as the first "layer" of the final model, then train on the desired task

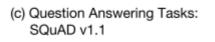


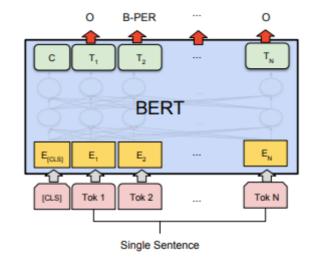




(b) Single Sentence Classification Tasks: SST-2, CoLA







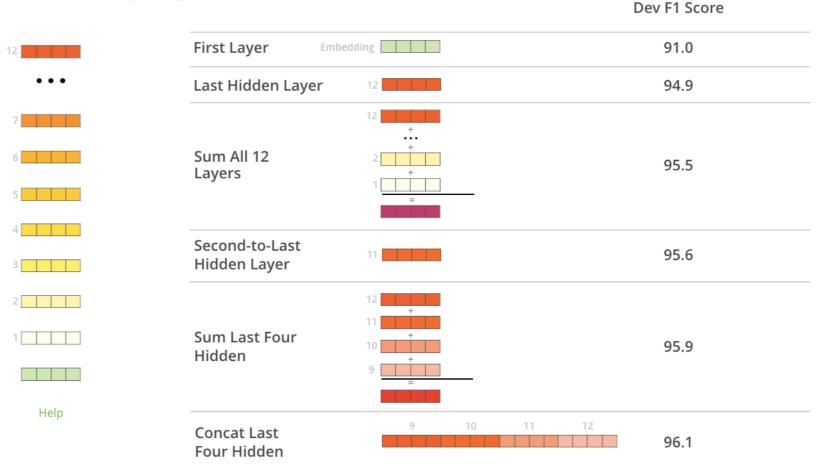
(d) Single Sentence Tagging Tasks: CoNLL-2003 NER

Using BERT for Representations

• Use the pre-trained model to obtain contextualised word representations for the input

What is the best contextualized embedding for "Help" in that context?

For named-entity recognition task CoNLL-2003 NER



[visualization from The Illustrated BERT: https://jalammar.github.io/illustrated-bert/]

Which Method is Better?

Which Model?

- Not very extensive comparison...
- Wieting et al. (2015) find that simple word averaging is more robust out-of-domain
- Devlin et al. (2018) compare unidirectional and bidirectional transformer, but no comparison to LSTM like ELMo (for performance reasons?)

Which Training Objective?

- Not very extensive comparison...
- Zhang and Bowman (2018) control for training data, and find that bi-directional LM seems better than MT encoder
- Devlin et al. (2018) find next-sentence prediction objective good compliment to LM objective

Which Data?

- Not very extensive comparison...
- Zhang and Bowman (2018) find that more data is probably better, but results preliminary.
- Data with context is probably essential.

Questions?