
CS11-747 Neural Networks for NLP

Transition-based Parsing
with Neural Nets

Graham Neubig

Site
https://phontron.com/class/nn4nlp2018/

https://phontron.com/class/nn4nlp2018/

Two Types of 
Linguistic Structure

• Dependency: focus on relations between words

• Phrase structure: focus on the structure of the sentence

I saw a girl with a telescope

PRP VBD DT NN IN DT NN

NP NP
PP

VP
S

I saw a girl with a telescope

ROOT

Parsing
• Predicting linguistic structure from input sentence

• Transition-based models

• step through actions one-by-one until we have output

• like history-based model for POS tagging

• Graph-based models

• calculate probability of each edge/constituent, and perform
some sort of dynamic programming

• like linear CRF model for POS

Shift-reduce Dependency
Parsing

Why Dependencies?
• Dependencies are often good for semantic tasks,

as related words are close in the tree

• It is also possible to create labeled dependencies,
that explicitly show the relationship between words

det
dobj

det

I saw a girl with a telescope

prep

nsubj
pobj

Arc Standard Shift-Reduce Parsing
(Yamada & Matsumoto 2003, Nivre 2003)

• Process words one-by-one left-to-right
• Two data structures

• Queue: of unprocessed words
• Stack: of partially processed words

• At each point choose
• shift: move one word from queue to stack
• reduce left: top word on stack is head of second word
• reduce right: second word on stack is head of top word

• Learn how to choose each action with a classifier

Shift Reduce Example
Stack Buffer Stack Buffer

I saw a girlROOT

I saw a girlROOT
shift

I saw a girlROOT
shift

I saw a girlROOT

shift

I saw a girlROOT

left

I saw a girlROOT

shift

∅

I saw a girlROOT

left

∅

I saw a girlROOT

right

∅

I saw a girlROOT

right

∅

Classification for Shift-reduce
• Given a configuration

• Which action do we choose?

I saw a girlROOT

Stack Buffer

shift

I saw a girlROOT ∅ left

I saw a girlROOT

right

I saw a girlROOT

Making Classification
Decisions

• Extract features from the configuration

• what words are on the stack/buffer?

• what are their POS tags?

• what are their children?

• Feature combinations are important!

• Second word on stack is verb AND first is noun: “right” action is
likely

• Combination features used to be created manually (e.g. Zhang and
Nivre 2011), now we can use neural nets!

A Feed-forward Neural Model for
Shift-reduce Parsing

(Chen and Manning 2014)

A Feed-forward Neural Model for
Shift-reduce Parsing

(Chen and Manning 2014)
• Extract non-combined features (embeddings)
• Let the neural net do the feature combination

What Features to Extract?
• The top 3 words on the stack and buffer (6 features) 
s1, s2, s3, b1, b2, b3

• The two leftmost/rightmost children of the top two words on
the stack (8 features)  
lc1(si), lc2(si), rc1(si), rc2(si) i=1,2

• leftmost and rightmost grandchildren (4 features) 
lc1(lc1(si)), rc1(rc1(si)) i=1,2

• POS tags of all of the above (18 features)

• Arc labels of all children/grandchildren (12 features)

Non-linear Function:  
Cube Function

• Why? Directly extracts feature combinations of up
to three (similar to Polynomial Kernel in SVMs)

• Take the cube of the input value vector

Result

• Faster than most standard dependency parsers
(1000 words/second)

• Use pre-computation trick to cache matrix
multiplies of common words

• Strong results, beating most existing transition-
based parsers at the time

Let’s Try it Out!
ff-depparser.py

Using Tree Structure in NNs:
Syntactic Composition

Why Tree Structure?

Recursive Neural Networks
(Socher et al. 2011)

I hate this movie

Tree-RNN

Tree-RNN

tree-rnn(h1,h2) = tanh(W [h1;h2] + b)

Can also parameterize by constituent type →
different composition behavior for NP, VP, etc.

Tree-RNN

Tree-structured LSTM
(Tai et al. 2015)

• Child Sum Tree-LSTM

• Parameters shared between all children (possibly based
on grammatical label, etc.)

• Forget gate value is different for each child → the
network can learn to “ignore” children (e.g. give less
weight to non-head nodes)

• N-ary Tree-LSTM

• Different parameters for each child, up to N (like the
Tree RNN)

Bi-LSTM Composition
(Dyer et al. 2015)

• Simply read in the constituents with a BiLSTM
• The model can learn its own composition function!

I hate this movie

BiLSTM

BiLSTM

BiLSTM

Let’s Try it Out!
tree-lstm.py

Stack LSTM: Dependency Parsing w/
Less Engineering, Wider Context

(Dyer et al. 2015)

Encoding Parsing
Configurations w/ RNNs

• We don’t want to do feature engineering (why
leftmost and rightmost grandchildren only?!)

• Can we encode all the information about the parse
configuration with an RNN?

• Information we have: stack, buffer, past actions

Encoding Stack Configurations w/
RNNs

overhasty
an decision was

amod

REDUCE-LEFT(amod)

SHIFT

|{z} |{z}

|
{z

}
…

SH
IFT
RE
D-L

(am
od
)

…

made

S B

A

; ;

pt

root

TO
PTOP

TOP

REDUCE_L REDUCE_RSHIFT

(Slide credits: Chris Dyer)

• We can embed words, and can embed tree fragments using
syntactic compositon

• The contents of the buffer are just a sequence of embedded words

• which we periodically “shift” from

• The contents of the stack is just a sequence of embedded trees

• which we periodically pop from and push to

• Sequences -> use RNNs to get an encoding!

• But running an RNN for each state will be expensive. Can we do
better?

Transition-based parsing 
State embeddings

(Slide credits: Chris Dyer)

• Augment RNN with a stack pointer

• Three constant-time operations

• push - read input, add to top of stack

• pop - move stack pointer back

• embedding - return the RNN state at the location
of the stack pointer (which summarizes its
current contents)

Transition-based parsing 
Stack RNNs

(Slide credits: Chris Dyer)

;

y0

Transition-based parsing 
Stack RNNs

s=[rnn.inital_state()]
s.append[s[-1].add_input(x1)
s.pop()
s.append[s[-1].add_input(x2)
s.pop()
s.append[s[-1].add_input(x3)

DyNet:

(Slide credits: Chris Dyer)

; x1

y0 y1

Transition-based parsing 
Stack RNNs

s=[rnn.inital_state()]
s.append[s[-1].add_input(x1)
s.pop()
s.append[s[-1].add_input(x2)
s.pop()
s.append[s[-1].add_input(x3)

DyNet:

(Slide credits: Chris Dyer)

; x1

y0 y1

Transition-based parsing 
Stack RNNs

s=[rnn.inital_state()]
s.append[s[-1].add_input(x1)
s.pop()
s.append[s[-1].add_input(x2)
s.pop()
s.append[s[-1].add_input(x3)

DyNet:

(Slide credits: Chris Dyer)

; x1

y0 y1 y2

x2

Transition-based parsing 
Stack RNNs

s=[rnn.inital_state()]
s.append[s[-1].add_input(x1)
s.pop()
s.append[s[-1].add_input(x2)
s.pop()
s.append[s[-1].add_input(x3)

DyNet:

(Slide credits: Chris Dyer)

; x1

y0 y1 y2

x2

Transition-based parsing 
Stack RNNs

s=[rnn.inital_state()]
s.append[s[-1].add_input(x1)
s.pop()
s.append[s[-1].add_input(x2)
s.pop()
s.append[s[-1].add_input(x3)

DyNet:

(Slide credits: Chris Dyer)

; x1

y0 y1 y2

x2 x3

y3

Transition-based parsing 
Stack RNNs

s=[rnn.inital_state()]
s.append[s[-1].add_input(x1)
s.pop()
s.append[s[-1].add_input(x2)
s.pop()
s.append[s[-1].add_input(x3)

DyNet:

(Slide credits: Chris Dyer)

Let’s Try it Out!  
stacklstm-depparser.py

Shift-reduce Parsing  
for Phrase Structure

Shift-reduce Parsing for Phrase Structure
(Sagae and Lavie 2005, Watanabe 2015)

• Shift, reduce-X (binary), unary-X (unary) where X is a label

people saw the girl

NP
VP

S

tallthat

WHNP

SBAR
NP

DT JJ NPVBDWDTNNS

the girl

NP

tall
DT JJ NP

the girl

NP’

tall
DT JJ NP

NP

First, Binarize

shift

the girltall
Stack Buffer

the girltall ∅

reduce-NP’
Stack

the girltall

the girltall

NP’

unary-S
Stack

saw
NP
…

VP

saw
NP
…

VP
S

Recurrent Neural Network Grammars
(Dyer et al. 2016)

• Top-down generative models for parsing  
 
 
 
 
 
 
 
 

• Can serve as a language model as well
• Good parsing results
• Decoding is difficult: need to generate with discriminative

model then rerank, importance sampling for LM evaluation

A Simple Approximation:
Linearized Trees (Vinyals et al. 2015)

• Similar to RNNG, but generates symbols of linearized tree  
 
 
 

• + Can be done with simple sequence-to-sequence
models

• - No explicit composition function like StackLSTM/RNNG

• - Not guaranteed to output well-formed trees

Questions?

