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Two Types of 
Linguistic Structure

• Dependency: focus on relations between words

• Phrase structure: focus on the structure of the sentence
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Parsing
• Predicting linguistic structure from input sentence 

• Transition-based models

• step through actions one-by-one until we have output  

• like history-based model for POS tagging 

• Graph-based models

• calculate probability of each edge/constituent, and perform 
some sort of dynamic programming 

• like linear CRF model for POS



Shift-reduce Dependency 
Parsing



Why Dependencies?
• Dependencies are often good for semantic tasks, 

as related words are close in the tree 

• It is also possible to create labeled dependencies, 
that explicitly show the relationship between words
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Arc Standard Shift-Reduce Parsing 
(Yamada & Matsumoto 2003, Nivre 2003)

• Process words one-by-one left-to-right 
• Two data structures 

• Queue: of unprocessed words 
• Stack: of partially processed words 

• At each point choose 
• shift: move one word from queue to stack 
• reduce left: top word on stack is head of second word 
• reduce right: second word on stack is head of top word 

• Learn how to choose each action with a classifier



Shift Reduce Example
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Classification for Shift-reduce
• Given a configuration

• Which action do we choose?
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Making Classification 
Decisions

• Extract features from the configuration 

• what words are on the stack/buffer? 

• what are their POS tags? 

• what are their children? 

• Feature combinations are important! 

• Second word on stack is verb AND first is noun: “right” action is 
likely 

• Combination features used to be created manually (e.g. Zhang and 
Nivre 2011), now we can use neural nets!



A Feed-forward Neural Model for 
Shift-reduce Parsing 

(Chen and Manning 2014)



A Feed-forward Neural Model for 
Shift-reduce Parsing 

(Chen and Manning 2014)
• Extract non-combined features (embeddings) 
• Let the neural net do the feature combination



What Features to Extract?
• The top 3 words on the stack and buffer (6 features) 
s1, s2, s3, b1, b2, b3 

• The two leftmost/rightmost children of the top two words on 
the stack (8 features)  
lc1(si), lc2(si), rc1(si), rc2(si) i=1,2 

• leftmost and rightmost grandchildren (4 features) 
lc1(lc1(si)), rc1(rc1(si)) i=1,2 

• POS tags of all of the above (18 features) 

• Arc labels of all children/grandchildren (12 features)



Non-linear Function:  
Cube Function

• Why? Directly extracts feature combinations of up 
to three (similar to Polynomial Kernel in SVMs)

• Take the cube of the input value vector



Result

• Faster than most standard dependency parsers 
(1000 words/second) 

• Use pre-computation trick to cache matrix 
multiplies of common words 

• Strong results, beating most existing transition-
based parsers at the time



Let’s Try it Out! 
ff-depparser.py



Using Tree Structure in NNs: 
Syntactic Composition



Why Tree Structure?



Recursive Neural Networks 
(Socher et al. 2011)

I hate this movie

Tree-RNN

Tree-RNN

tree-rnn(h1,h2) = tanh(W [h1;h2] + b)

Can also parameterize by constituent type → 
different composition behavior for NP, VP, etc.

Tree-RNN



Tree-structured LSTM 
(Tai et al. 2015)

• Child Sum Tree-LSTM

• Parameters shared between all children (possibly based 
on grammatical label, etc.) 

• Forget gate value is different for each child → the 
network can learn to “ignore” children (e.g. give less 
weight to non-head nodes) 

• N-ary Tree-LSTM

• Different parameters for each child, up to N (like the 
Tree RNN)



Bi-LSTM Composition 
(Dyer et al. 2015)

• Simply read in the constituents with a BiLSTM 
• The model can learn its own composition function!

I hate this movie
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Let’s Try it Out! 
tree-lstm.py



Stack LSTM: Dependency Parsing w/ 
Less Engineering, Wider Context 

(Dyer et al. 2015)



Encoding Parsing 
Configurations w/ RNNs

• We don’t want to do feature engineering (why 
leftmost and rightmost grandchildren only?!) 

• Can we encode all the information about the parse 
configuration with an RNN? 

• Information we have: stack, buffer, past actions



Encoding Stack Configurations w/ 
RNNs

overhasty
an decision was

amod

REDUCE-LEFT(amod)

SHIFT

|{z} |{z}

|
{z

}
…

SH
IFT
RE
D-L

(am
od
)

…

made

S B

A

; ;

pt

root

TO
PTOP

TOP

REDUCE_L REDUCE_RSHIFT

(Slide credits: Chris Dyer)



• We can embed words, and can embed tree fragments using 
syntactic compositon 

• The contents of the buffer are just a sequence of embedded words 

• which we periodically “shift” from 

• The contents of the stack is just a sequence of embedded trees 

• which we periodically pop from and push to 

• Sequences -> use RNNs to get an encoding! 

• But running an RNN for each state will be expensive. Can we do 
better?

Transition-based parsing 
State embeddings

(Slide credits: Chris Dyer)



• Augment RNN with a stack pointer 

• Three constant-time operations 

• push - read input, add to top of stack 

• pop - move stack pointer back 

• embedding - return the RNN state at the location 
of the stack pointer (which summarizes its 
current contents)

Transition-based parsing 
Stack RNNs

(Slide credits: Chris Dyer)
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Transition-based parsing 
Stack RNNs

s=[rnn.inital_state()]
s.append[s[-1].add_input(x1)
s.pop()
s.append[s[-1].add_input(x2)
s.pop()
s.append[s[-1].add_input(x3)

DyNet:

(Slide credits: Chris Dyer)
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s.pop()
s.append[s[-1].add_input(x3)

DyNet:
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Transition-based parsing 
Stack RNNs

s=[rnn.inital_state()]
s.append[s[-1].add_input(x1)
s.pop()
s.append[s[-1].add_input(x2)
s.pop()
s.append[s[-1].add_input(x3)
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Transition-based parsing 
Stack RNNs

s=[rnn.inital_state()]
s.append[s[-1].add_input(x1)
s.pop()
s.append[s[-1].add_input(x2)
s.pop()
s.append[s[-1].add_input(x3)

DyNet:

(Slide credits: Chris Dyer)
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Transition-based parsing 
Stack RNNs

s=[rnn.inital_state()]
s.append[s[-1].add_input(x1)
s.pop()
s.append[s[-1].add_input(x2)
s.pop()
s.append[s[-1].add_input(x3)

DyNet:
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Transition-based parsing 
Stack RNNs

s=[rnn.inital_state()]
s.append[s[-1].add_input(x1)
s.pop()
s.append[s[-1].add_input(x2)
s.pop()
s.append[s[-1].add_input(x3)

DyNet:

(Slide credits: Chris Dyer)



Let’s Try it Out!  
stacklstm-depparser.py



Shift-reduce Parsing  
for Phrase Structure



Shift-reduce Parsing for Phrase Structure 
(Sagae and Lavie 2005, Watanabe 2015)

• Shift, reduce-X (binary), unary-X (unary) where X is a label
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Recurrent Neural Network Grammars 
(Dyer et al. 2016)

• Top-down generative models for parsing  
 
 
 
 
 
 
 
 

• Can serve as a language model as well 
• Good parsing results 
• Decoding is difficult: need to generate with discriminative 

model then rerank, importance sampling for LM evaluation



A Simple Approximation:  
Linearized Trees (Vinyals et al. 2015)

• Similar to RNNG, but generates symbols of linearized tree  
 
 
 

• + Can be done with simple sequence-to-sequence 
models 

• - No explicit composition function like StackLSTM/RNNG 

• - Not guaranteed to output well-formed trees



Questions?


