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Two Types of
L inguistic Structure

* Dependency: focus on relations between words
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* Phrase structure: focus on the structure of the sentence
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Parsing

* Predicting linguistic structure from input sentence
* Transition-based models
e step through actions one-by-one until we have output
* like history-based model for POS tagging
 Graph-based models

« calculate probability of each edge/constituent, and perform
some sort of dynamic programming

e |ike linear CRF model for POS



Shift-reduce Dependency
Parsing



Why Dependencies”?

* Dependencies are often good for semantic tasks,
as related words are close In the tree

* |tis also possible to create labeled dependencies,
that explicitly show the relationship between words
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Arc Standard Shift-Reduce Parsing

(Yamada & Matsumoto 2003, Nivre 2003)

* Process words one-by-one left-to-right
* [Two data structures
* Queue: of unprocessed words
* Stack: of partially processed words
* At each point choose
* shift: move one word from queue to stack
* reduce left: top word on stack is head of second word
* reduce right: second word on stack is head of top word

e | earn how to choose each action with a classifier



Shift Reduce Example
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Classification for Shift-reduce

* Given a configuration

Stack Buffer
N\
ROOT | saw a gir/

 \Which action do we choose?”

shift right
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ROOT | saw a girl © o ROOTI| saw a gir/
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Making Classification
Decisions

e Extract teatures from the configuration
« what words are on the stack/buffer?
e what are their POS tags?
« what are their children?

 Feature combinations are important!

e Second word on stack is verb AND first is noun: “right” action is
ikely

e Combination features used to be created manually (e.g. Zhang and
Nivre 2011), now we can use neural nets!



A Feed-forward Neural Model for
Shift-reduce Parsing

(Chen and Manning 2014)



A Feed-forward Neural Model for
Shift-reduce Parsing

(Chen and Manning 2014)
* Extract non-combined features (embeddings)

e | et the neural net do the feature combination

Softmax layer:
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What Features to Extract?

* The top 3 words on the stack and buffer (6 features)
S1, S22, S3y b1, bz, b3

* The two leftmost/rightmost children of the top two words on
the stack (8 features)

lci(si), lca(si), rci(si), rce(sy) 1=1,2

e |leftmost and rightmost grandchildren (4 teatures)
lci(lei(si)), rci(rci(si)) i=1,2

 POS tags of all of the above (18 features)

* Arc labels of all children/grandchildren (12 features)



Non-linear Function:
Cube Function

* Jake the cube of the input value vector
h=(WPz? + Whal + Wizt + b)°

* Why? Directly extracts feature combinations of up
to three (similar to Polynomial Kernel in SVMs)

glwizx1 + ... + wpTy, +b) =

Z (wiwjwg)T;x;T) + Z b(ww;)z;T;. ..

1,7,k 2,J



Result

* Faster than most standard dependency parsers
(1000 words/second)

* Use pre-computation trick to cache matrix
multiplies of common words

e Strong results, beating most existing transition-
based parsers at the time



| et’s Try it Out!

ff-depparser.py




Using Tree Structure in NNSs:
Syntactic Composition



Why Tree Structure”

What it

Empire
makes up for
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in depth its heart



Recursive Neural Networks
(Socher et al. 2011)
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tree-rnn(hq, hy) = tanh(W |h; ho| 4+ b)

Can also parameterize by constituent type —
different composition behavior for NP, VP, etc.



Tree-structured LSTM

(Tal et al. 2015)

- Child Sum Tree-LSTM

 Parameters shared between all children (possibly based
on grammatical label, etc.)

* Forget gate value is different for each child — the
network can learn to “ignore” children (e.g. give less
weight to non-head nodes)

- N-ary Tree-LSTM

e Different parameters for each child, up to N (like the
Tree RNN)



Bi-LSTM Composition
(Dyer et al. 2015)
o Simply read in the constituents with a BILSTM

 The model can learn its own composition function!
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| et’s Try it Out!

tree—-lstm.py



Stack LSTM: Dependency Parsing w/

Less Engineering, Wider Context
(Dyer et al. 2015)



Encoding Parsing
Configurations w/ RNNs

* We dont want to do feature engineering (why
leftmost and rightmost grandchildren only?!)

 Can we encode all the information about the parse
configuration with an RNN?

* |nformation we have: stack, buffer, past actions



Encoding Stack Configurations w/
RNNSs
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(Slide credits: Chris Dyer)



Transition-based parsing
State embeddings

We can embed words, and can embed tree fragments using
syntactic compositon

The contents of the buffer are just a sequence of embedded words
» which we periodically “shift” from

The contents of the stack is just a sequence of embedded trees

e which we periodically pop from and push to

Sequences -> use RNNs to get an encoding!

But running an RNN for each state will be expensive. Can we do
better?

(Slide credits: Chris Dyer)



Transition-based parsing
Stack RNNs

* Augment RNN with a stack pointer
* Three constant-time operations
 push - read input, add to top of stack
e pop - move stack pointer back
e embedding - return the RNN state at the location

of the stack pointer (which summarizes its
current contents)

(Slide credits: Chris Dyer)



Transition-based parsing

Stack RNNs
|
/ DyNet:
YO s=[rnn.inital state()]
1
1
)

(Slide credits: Chris Dyer)



Transition-based parsing
Stack RNNs

/ DyNet:
= .inital state()]
yO y]- :.a;::pdr[ls[fl]?aZdiinput(xl)
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(Slide credits: Chris Dyer)



Transition-based parsing
Stack RNNs

/ DyNet:
s=[rnn.inital state()]
yO y]- s.append[s[-1].add_input(x1)
1 1 S.pop ()
+—>
) X1

(Slide credits: Chris Dyer)



Transition-based parsing
Stack RNNs

/ DyNet:
s=[rnn.inital state()]
yO y]- y2 s.append[s[-1].add_input(x1)
1 1 1 s.pop ()
s.append[s[-1].add_input(x2)
+—>
() X1 X2

(Slide credits: Chris Dyer)



Transition-based parsing
Stack RNNs

/ DyNet:
s=[rnn.inital state()]
yO y]- y2 s.append[s[-1].add_input(x1)
1 1 1 s.pop ()
s.append[s[-1].add_input(x2)
[, s.pop ()
() X1 X2

(Slide credits: Chris Dyer)



Transition-based parsing
Stack RNNs

|
/ DyNet:

s=[rnn.inital state()]
yO y]- y2 y3 s.append[s[-1].add_input(x1)
1 1 1 b e
s.append[s[-1].add_input(x2)
> S.pop ()
| s.append[s[-1].add_input(x3)
@ X1 X9 X3

(Slide credits: Chris Dyer)



| et’s Try it Out!

stacklstm—-depparser.py



Shift-reduce Parsing
for Phrase Structure



Shift-reduce Parsing for Phrase Structure
(Sagae and Lavie 2005, Watanabe 2015)

e Shift, reduce-X (binary), unary-X (unary) where X is a label
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Recurrent Neural Network Grammars

(Dyer et al. 2016)
e Jop-down generative models for parsing

Stack Terminals Action
0 NT(S)
c (S NT(NP)
2 | (S| (NP GEN(The)
3 | (S|(NP|The The GEN(hungry)
s | (S| (NP|The | hungry The | hungry GEN(cat)
s | (S|(NP|The | hungry | cat The  hungry | cat REDUCE
¢ | (S|(NP The hungry cat) The hungry | cat NT(VP)
7 | (S| (NP The hungry cat) | (VP The | hungry | cat GEN(meows)
3 | (S| (NP The hungry cat) | (VP meows The  hungry | cat | meows REDUCE
9 | (S| (NP The hungry cat) | (VP meows) The  hungry | cat | meows GEN(.)
0 | (S| (NP The hungry cat) | (VP meows) |. | The | hungry | cat| meows |. | REDUCE
i | (S (NP The hungry cat) (VP meows) .) The | hungry | cat | meows | .

e Can serve as a language model as well

e (Good

parsing resu

e Decoo

ing Is difficu
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t: need to generate with discriminative

model then rerank, importance sampling for LM evaluation



A Simple Approximation:
| Inearized Irees (vinyals et al. 2015)

Similar to RNNG, but generates symbols of linearized tree
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+ Can be done with simple sequence-to-sequence
models

- No explicit composition function like StackLSTM/RNNG

- Not guaranteed to output well-formed trees



Questions?



