CS11-747 Neural Networks for NLP
Transition-based Parsing

with Neural Nets

Graham Neubig

P Carnegie Mellon University
#7»’ Language Technologies Institute

Site
https://phontron.com/class/nn4nlp2018/

https://phontron.com/class/nn4nlp2018/

Two Types of
L inguistic Structure

* Dependency: focus on relations between words
ROOT

~AA D\ T

I saw a girl with a telescope

* Phrase structure: focus on the structure of the sentence
S

e

PRP VBD DT NN

} } b l l
| saw a qirl vv|th a telescope

Parsing

* Predicting linguistic structure from input sentence
* Transition-based models
e step through actions one-by-one until we have output
* like history-based model for POS tagging
 Graph-based models

« calculate probability of each edge/constituent, and perform
some sort of dynamic programming

e |ike linear CRF model for POS

Shift-reduce Dependency
Parsing

Why Dependencies”?

* Dependencies are often good for semantic tasks,
as related words are close In the tree

* |tis also possible to create labeled dependencies,
that explicitly show the relationship between words

prep

dobj pOD)
nsubj /det det
Y\ VA

| saw a girl with a telescope

Arc Standard Shift-Reduce Parsing

(Yamada & Matsumoto 2003, Nivre 2003)

* Process words one-by-one left-to-right
* [Two data structures
* Queue: of unprocessed words
* Stack: of partially processed words
* At each point choose
* shift: move one word from queue to stack
* reduce left: top word on stack is head of second word
* reduce right: second word on stack is head of top word

e | earn how to choose each action with a classifier

Shift Reduce Example

Stack Buffer
ROOT [saw a girl
| shift

ROOT | saw a qgirl
| shift
ROOT | saw a girl
| shift
SN shift
ROOT | saw a girl
lleﬁ
N
ROOT | saw a girl

Stack Buffer
N\
ROOT | saw agirl 9
left l
¥ N\ P
ROOT | saw agirl 9
thtl
WA
ROOT | saw a girl ©
thtl
aaYar:'
ROOT | saw a girl ©

Classification for Shift-reduce

* Given a configuration

Stack Buffer
N\
ROOT | saw a gir/

 \Which action do we choose?”

shift right
N\ Y
ROOT | saw a girl © o ROOTI| saw a gir/
'Y

ROOTI| saw a gir/

Making Classification
Decisions

e Extract teatures from the configuration
« what words are on the stack/buffer?
e what are their POS tags?
« what are their children?

 Feature combinations are important!

e Second word on stack is verb AND first is noun: “right” action is
ikely

e Combination features used to be created manually (e.g. Zhang and
Nivre 2011), now we can use neural nets!

A Feed-forward Neural Model for
Shift-reduce Parsing

(Chen and Manning 2014)

A Feed-forward Neural Model for
Shift-reduce Parsing

(Chen and Manning 2014)
* Extract non-combined features (embeddings)

e | et the neural net do the feature combination

Softmax layer:

p = softmax(Wsh) [. O O .J
Hidden layer: (| "

= (W¥z¥ + Wiat + Wizl + bp)3 bd. |]
tnput layer: [z, o*,2!] [00 {000 _/_//___//_ ////// W
wofds POS tags arc labels
Stack Buffer
Configuration ROOT has_VBZ good_JJ | | control_.NN
~ nsubj

He_PRP

What Features to Extract?

* The top 3 words on the stack and buffer (6 features)
S1, S22, S3y b1, bz, b3

* The two leftmost/rightmost children of the top two words on
the stack (8 features)

lci(si), lca(si), rci(si), rce(sy) 1=1,2

e |leftmost and rightmost grandchildren (4 teatures)
lci(lei(si)), rci(rci(si)) i=1,2

 POS tags of all of the above (18 features)

* Arc labels of all children/grandchildren (12 features)

Non-linear Function:
Cube Function

* Jake the cube of the input value vector
h=(WPz? + Whal + Wizt + b)°

* Why? Directly extracts feature combinations of up
to three (similar to Polynomial Kernel in SVMs)

glwizx1 + ... + wpTy, +b) =

Z (wiwjwg)T;x;T) + Z b(ww;)z;T;. ..

1,7,k 2,J

Result

* Faster than most standard dependency parsers
(1000 words/second)

* Use pre-computation trick to cache matrix
multiplies of common words

e Strong results, beating most existing transition-
based parsers at the time

| et’s Try it Out!

ff-depparser.py

Using Tree Structure in NNSs:
Syntactic Composition

Why Tree Structure”

What it

Empire
makes up for
lacks with

in depth its heart

Recursive Neural Networks
(Socher et al. 2011)

i halte thlis molvie
W@d@H®

/

tree-rnn(hq, hy) = tanh(W |h; ho| 4+ b)

Can also parameterize by constituent type —
different composition behavior for NP, VP, etc.

Tree-structured LSTM

(Tal et al. 2015)

- Child Sum Tree-LSTM

 Parameters shared between all children (possibly based
on grammatical label, etc.)

* Forget gate value is different for each child — the
network can learn to “ignore” children (e.g. give less
weight to non-head nodes)

- N-ary Tree-LSTM

e Different parameters for each child, up to N (like the
Tree RNN)

Bi-LSTM Composition
(Dyer et al. 2015)
o Simply read in the constituents with a BILSTM

 The model can learn its own composition function!

| hate thls mowe

!

@b

III II

III

\ cmsw)

(BiLSTM]
v

g
CBiLSTI\/I)
esse

| et’s Try it Out!

tree—-lstm.py

Stack LSTM: Dependency Parsing w/

Less Engineering, Wider Context
(Dyer et al. 2015)

Encoding Parsing
Configurations w/ RNNs

* We dont want to do feature engineering (why
leftmost and rightmost grandchildren only?!)

 Can we encode all the information about the parse
configuration with an RNN?

* |nformation we have: stack, buffer, past actions

Encoding Stack Configurations w/
RNNSs

SHIFT REDUCE R
- B
q ptm
/ 2~ N\ ’

R

— — ———— —— S —
T 1 amoc T T T
fl an [\ decision was made ROOT
overhasty QZ
«— REDUCE-LEFT(amod)
) T
<«— SHIFT

(Slide credits: Chris Dyer)

Transition-based parsing
State embeddings

We can embed words, and can embed tree fragments using
syntactic compositon

The contents of the buffer are just a sequence of embedded words
» which we periodically “shift” from

The contents of the stack is just a sequence of embedded trees

e which we periodically pop from and push to

Sequences -> use RNNs to get an encoding!

But running an RNN for each state will be expensive. Can we do
better?

(Slide credits: Chris Dyer)

Transition-based parsing
Stack RNNs

* Augment RNN with a stack pointer
* Three constant-time operations
 push - read input, add to top of stack
e pop - move stack pointer back
e embedding - return the RNN state at the location

of the stack pointer (which summarizes its
current contents)

(Slide credits: Chris Dyer)

Transition-based parsing

Stack RNNs
|
/ DyNet:
YO s=[rnn.inital state()]
1
1
)

(Slide credits: Chris Dyer)

Transition-based parsing
Stack RNNs

/ DyNet:
= .inital state()]
yO y]- :.a;::pdr[ls[fl]?aZdiinput(xl)
+—>
1 1
) X1

(Slide credits: Chris Dyer)

Transition-based parsing
Stack RNNs

/ DyNet:
s=[rnn.inital state()]
yO y]- s.append[s[-1].add_input(x1)
1 1 S.pop ()
+—>
) X1

(Slide credits: Chris Dyer)

Transition-based parsing
Stack RNNs

/ DyNet:
s=[rnn.inital state()]
yO y]- y2 s.append[s[-1].add_input(x1)
1 1 1 s.pop ()
s.append[s[-1].add_input(x2)
+—>
() X1 X2

(Slide credits: Chris Dyer)

Transition-based parsing
Stack RNNs

/ DyNet:
s=[rnn.inital state()]
yO y]- y2 s.append[s[-1].add_input(x1)
1 1 1 s.pop ()
s.append[s[-1].add_input(x2)
[, s.pop ()
() X1 X2

(Slide credits: Chris Dyer)

Transition-based parsing
Stack RNNs

|
/ DyNet:

s=[rnn.inital state()]
yO y]- y2 y3 s.append[s[-1].add_input(x1)
1 1 1 b e
s.append[s[-1].add_input(x2)
> S.pop ()
| s.append[s[-1].add_input(x3)
@ X1 X9 X3

(Slide credits: Chris Dyer)

| et’s Try it Out!

stacklstm—-depparser.py

Shift-reduce Parsing
for Phrase Structure

Shift-reduce Parsing for Phrase Structure
(Sagae and Lavie 2005, Watanabe 2015)

e Shift, reduce-X (binary), unary-X (unary) where X is a label

NNS

NP

WH
v

WD’

SBAR
/T
v
VP
NP NP
— v —

; S T T
people that saw the tall girl

First, Binarize

shift

Stack
the tall

v

the tall girl

Buffer

girl

%)

reduce-NP’

Stack

the tall girl
v
NP’

the tall girl

NP
— vV
DT JJ NP
the tall girl NP
/—'NP’
£
DJ J+J I\lP
the tall girl
unary-S
Stack ?
VP — VP
TR
saw .. saw -

Recurrent Neural Network Grammars

(Dyer et al. 2016)
e Jop-down generative models for parsing

Stack Terminals Action
0 NT(S)
c (S NT(NP)
2 | (S| (NP GEN(The)
3 | (S|(NP|The The GEN(hungry)
s | (S| (NP|The | hungry The | hungry GEN(cat)
s | (S|(NP|The | hungry | cat The hungry | cat REDUCE
¢ | (S|(NP The hungry cat) The hungry | cat NT(VP)
7 | (S| (NP The hungry cat) | (VP The | hungry | cat GEN(meows)
3 | (S| (NP The hungry cat) | (VP meows The hungry | cat | meows REDUCE
9 | (S| (NP The hungry cat) | (VP meows) The hungry | cat | meows GEN(.)
0 | (S| (NP The hungry cat) | (VP meows) |. | The | hungry | cat| meows |. | REDUCE
i | (S (NP The hungry cat) (VP meows) .) The | hungry | cat | meows | .

e Can serve as a language model as well

e (Good

parsing resu

e Decoo

ing Is difficu

{S

t: need to generate with discriminative

model then rerank, importance sampling for LM evaluation

A Simple Approximation:
| Inearized Irees (vinyals et al. 2015)

Similar to RNNG, but generates symbols of linearized tree

- ; -

— L -

- e~

- -~
-~

-~

John has a dog . — NP -~ VP
NNP VBZ NP
DT "NN
John has a dog . — (_S (NP NNP)_\u’ (VP YBZ (NP DT NN IND)vp .)3

+ Can be done with simple sequence-to-sequence
models

- No explicit composition function like StackLSTM/RNNG

- Not guaranteed to output well-formed trees

Questions?

