CS11-747 Neural Networks for NLP Transition-based Parsing with Neural Nets

Graham Neubig

Carnegie Mellon University

Language Technologies Institute

Site <u>https://phontron.com/class/nn4nlp2018/</u>

Two Types of Linguistic Structure

• **Dependency:** focus on relations between words

• Phrase structure: focus on the structure of the sentence

Parsing

- Predicting linguistic structure from input sentence
- Transition-based models
 - step through actions one-by-one until we have output
 - like history-based model for POS tagging
- Graph-based models
 - calculate probability of each edge/constituent, and perform some sort of dynamic programming
 - like linear CRF model for POS

Shift-reduce Dependency Parsing

Why Dependencies?

- Dependencies are often good for semantic tasks, as related words are close in the tree
- It is also possible to create labeled dependencies, that explicitly show the relationship between words

Arc Standard Shift-Reduce Parsing

(Yamada & Matsumoto 2003, Nivre 2003)

- Process words one-by-one left-to-right
- Two data structures
 - Queue: of unprocessed words
 - Stack: of partially processed words
- At each point choose
 - **shift:** move one word from queue to stack
 - reduce left: top word on stack is head of second word
 - reduce right: second word on stack is head of top word
- Learn how to choose each action with a classifier

Shift Reduce Example

Classification for Shift-reduce

• Given a configuration

• Which action do we choose?

Making Classification Decisions

- Extract features from the configuration
 - what words are on the stack/buffer?
 - what are their POS tags?
 - what are their children?
- Feature combinations are important!
 - Second word on stack is verb AND first is noun: "right" action is likely
- Combination features used to be created manually (e.g. Zhang and Nivre 2011), now we can use neural nets!

A Feed-forward Neural Model for Shift-reduce Parsing (Chen and Manning 2014)

A Feed-forward Neural Model for Shift-reduce Parsing (Chen and Manning 2014)

- Extract non-combined features (embeddings)
- Let the neural net do the feature combination

What Features to Extract?

- The top 3 words on the stack and buffer (6 features) s_1 , s_2 , s_3 , b_1 , b_2 , b_3
- The two leftmost/rightmost children of the top two words on the stack (8 features)
 lc1(si), lc2(si), rc1(si), rc2(si) i=1,2
- leftmost and rightmost grandchildren (4 features)
 lc1(lc1(si)), rc1(rc1(si)) i=1,2
- POS tags of all of the above (18 features)
- Arc labels of all children/grandchildren (12 features)

Non-linear Function: Cube Function

• Take the cube of the input value vector

$$h = (W_1^w x^w + W_1^t x^t + W_1^l x^l + b_1)^3$$

 Why? Directly extracts feature combinations of up to three (similar to Polynomial Kernel in SVMs)

$$g(w_1x_1 + \ldots + w_mx_m + b) = \sum_{i,j,k} (w_iw_jw_k)x_ix_jx_k + \sum_{i,j} b(w_iw_j)x_ix_j\dots$$

Result

- Faster than most standard dependency parsers (1000 words/second)
 - Use pre-computation trick to cache matrix multiplies of common words
- Strong results, beating most existing transitionbased parsers at the time

Let's Try it Out! ff-depparser.py

Using Tree Structure in NNs: Syntactic Composition

Why Tree Structure?

Recursive Neural Networks

tree-rnn $(\boldsymbol{h}_1, \boldsymbol{h}_2) = \tanh(W[\boldsymbol{h}_1; \boldsymbol{h}_2] + \boldsymbol{b})$

Can also parameterize by constituent type \rightarrow different composition behavior for NP, VP, etc.

Tree-structured LSTM (Tai et al. 2015)

- Child Sum Tree-LSTM
 - Parameters shared between all children (possibly based on grammatical label, etc.)
 - Forget gate value is different for each child → the network can learn to "ignore" children (e.g. give less weight to non-head nodes)
- N-ary Tree-LSTM
 - Different parameters for each child, up to N (like the Tree RNN)

Bi-LSTM Composition (Dyer et al. 2015)

- Simply read in the constituents with a BiLSTM
- The model can learn its own composition function!

Let's Try it Out! tree-lstm.py

Stack LSTM: Dependency Parsing w/ Less Engineering, Wider Context (Dyer et al. 2015)

Encoding Parsing Configurations w/ RNNs

- We don't want to do feature engineering (why leftmost and rightmost grandchildren only?!)
- Can we encode all the information about the parse configuration with an RNN?
- Information we have: stack, buffer, past actions

Encoding Stack Configurations w/ RNNs

Transition-based parsing **State embeddings**

- We can embed words, and can embed tree fragments using syntactic compositon
- The contents of the buffer are just a sequence of embedded words
 - which we periodically "shift" from
- The contents of the stack is just a sequence of embedded trees
 - which we periodically pop from and push to
- Sequences -> use RNNs to get an encoding!
- But running an RNN for each state will be expensive. Can we do better?

- Augment RNN with a stack pointer
- Three *constant-time* operations
 - **push** read input, add to top of stack
 - **pop** move stack pointer back
 - embedding return the RNN state at the location of the stack pointer (which summarizes its current contents)

DyNet:

s=[rnn.inital_state()]

s.append[s[-1].add_input(x1)

- s.pop()
- s.append[s[-1].add_input(x2)
- s.pop()
- s.append[s[-1].add_input(x3)

DyNet:

```
s=[rnn.inital_state()]
s.append[s[-1].add_input(x1)
s.pop()
s.append[s[-1].add_input(x2)
s.pop()
s.append[s[-1].add_input(x3)
```


DyNet:

s=[rnn.inital_state()]
s.append[s[-1].add_input(x1)
s.pop()
s.append[s[-1].add_input(x2)
s.pop()
s.append[s[-1].add_input(x3)

DyNet:

```
s=[rnn.inital_state()]
s.append[s[-1].add_input(x1)
```

- s.pop()
- s.append[s[-1].add_input(x2)
- s.pop()
- s.append[s[-1].add_input(x3)

DyNet:

- s=[rnn.inital_state()]
- s.append[s[-1].add_input(x1)
- s.pop()
- s.append[s[-1].add_input(x2)
- s.pop()
- s.append[s[-1].add_input(x3)

Let's Try it Out! stacklstm-depparser.py

Shift-reduce Parsing for Phrase Structure

Shift-reduce Parsing for Phrase Structure (Sagae and Lavie 2005, Watanabe 2015)

• Shift, reduce-X (binary), unary-X (unary) where X is a label

Recurrent Neural Network Grammars (Dyer et al. 2016)

• Top-down generative models for parsing

	Stack	Terminals	Action
0			NT(S)
Т	(S		NT(NP)
2	(S (NP		GEN(The)
3	(S (NP The	The	GEN(hungry)
4	(S (NP The hungry	The hungry	GEN(cat)
5	(S (NP The hungry cat	The hungry cat	REDUCE
6	(S (NP The hungry cat)	The hungry cat	NT(VP)
7	(S (NP The hungry cat) (VP	The hungry cat	GEN(<i>meows</i>)
8	(S (NP The hungry cat) (VP meows	The hungry cat meows	REDUCE
9	(S (NP The hungry cat) (VP meows)	The hungry cat meows	gen(.)
10	(S (NP The hungry cat) (VP meows) .	The hungry cat meows .	REDUCE
11	(S (NP The hungry cat) (VP meows).)	The hungry cat meows .	

- Can serve as a language model as well
- Good parsing results
- Decoding is difficult: need to generate with discriminative model then rerank, importance sampling for LM evaluation

A Simple Approximation: Linearized Trees (Vinyals et al. 2015)

• Similar to RNNG, but generates symbols of linearized tree

John has a dog . \rightarrow (S (NP NNP)_{NP} (VP VBZ (NP DT NN)_{NP})_{VP} .)_S

- + Can be done with simple sequence-to-sequence models
- No explicit composition function like StackLSTM/RNNG
- Not guaranteed to output well-formed trees

Questions?