

Language Technologies Institute

Multimodal Machine Learning

Louis-Philippe (LP) Morency

CMU Multimodal Communication and Machine Learning Laboratory_[MultiComp Lab]

CMU Course 11-777: Multimodal Machine Learning

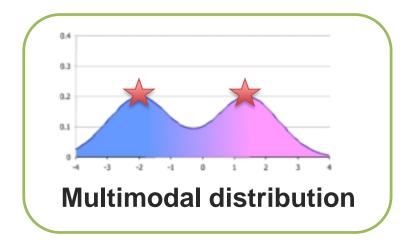
Carnegie Mellon University - Spring 2016 11-777: Advanced Multimodal	Machine Learning
Syllabus 🛓 💉 💼	
Course Information Staff Resources Groups	
Description	Announcements show all + Add
field which addresses some of the original goals of artificial intelligence by integrating and modeling multiple communicative modalities, including linguistic acoustic and visual messages. With the initial research on audio-visual speech recognition and more recently with language & vision projects such as image	Room assignments for paper discussion 🖍 Edit 📋 Delete

Lecture Objectives

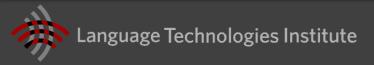
- What is Multimodal?
- Multimodal: Core technical challenges
 - Representation learning, translation, alignment, fusion and co-learning
- Multimodal representation learning
 - Multimodal tensor representation
- Implicit Alignment
 - Temporal attention
- Fusion and temporal modeling
 - Multi-view LSTM and memory-based fusion

What is Multimodal?

What is Multimodal?

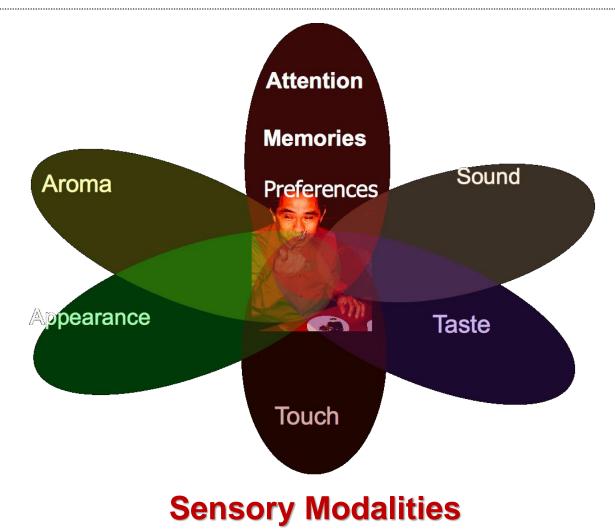


Multiple modes, i.e., distinct "peaks" (local maxima) in the probability density function



Carnegie Mellon University

What is Multimodal?



Carnegie Mellon University

Multimodal Communicative Behaviors



What is Multimodal?

Modality

The way in which something happens or is experienced.

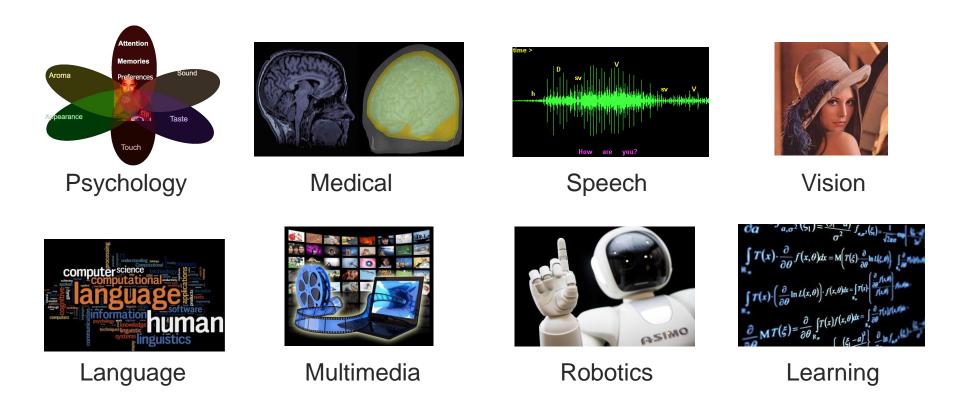
- Modality refers to a certain type of information and/or the representation format in which information is stored.
- Sensory modality: one of the primary forms of sensation, as vision or touch; channel of communication.

Medium ("middle")

A means or instrumentality for storing or communicating information; system of communication/transmission.

• Medium is the means whereby this information is delivered to the senses of the interpreter.

Multiple Communities and Modalities



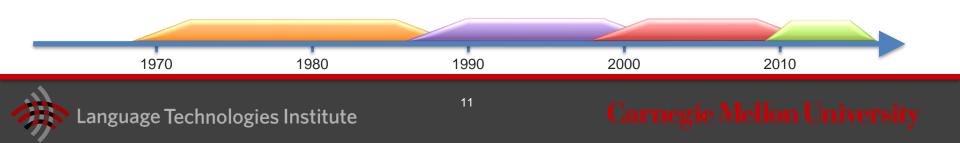
Examples of Modalities

- □ Natural language (both spoken or written)
- □ Visual (from images or videos)
- □ Auditory (including voice, sounds and music)
- Haptics / touch
- □ Smell, taste and self-motion
- Physiological signals
 - Electrocardiogram (ECG), skin conductance
- Other modalities
 - Infrared images, depth images, fMRI

Prior Research on "Multimodal"

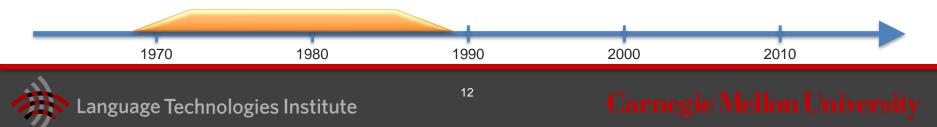
Four eras of multimodal research

- > The "behavioral" era (1970s until late 1980s)
- The "computational" era (late 1980s until 2000)
- > The "interaction" era (2000 2010)
- The "deep learning" era (2010s until …)
 - Main focus of this tutorial



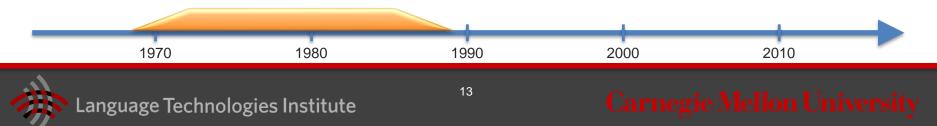
The McGurk Effect (1976)

Hearing lips and seeing voices - Nature



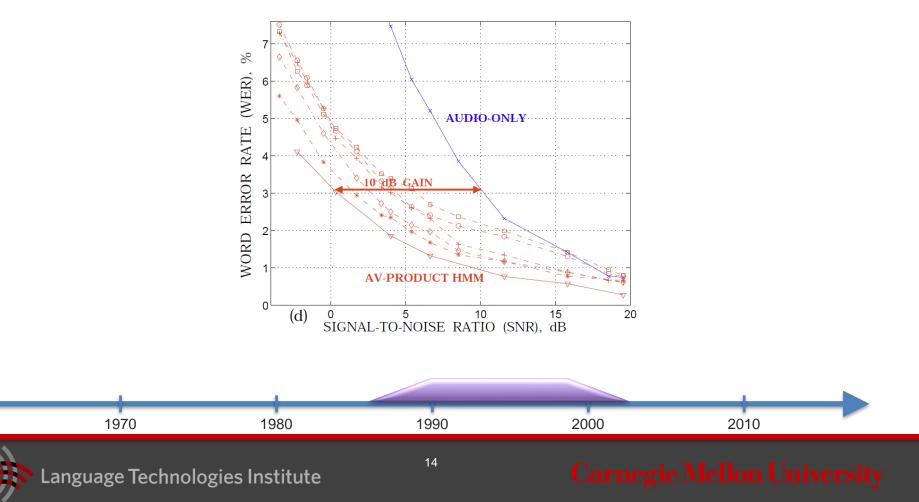
The McGurk Effect (1976)

Hearing lips and seeing voices - Nature



The "Computational" Era(Late 1980s until 2000)

1) Audio-Visual Speech Recognition (AVSR)



Core Technical Challenges

Core Challenges in "Deep" Multimodal ML

Representation

Alignment

Fusion

Translation

Co-Learning

Multimodal Machine Learning: A Survey and Taxonomy

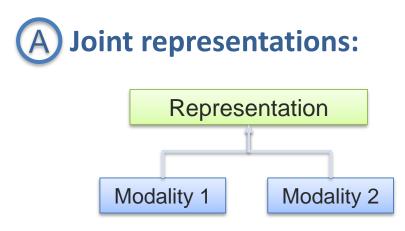
By Tadas Baltrusaitis, Chaitanya Ahuja, and Louis-Philippe Morency

https://arxiv.org/abs/1705.09406

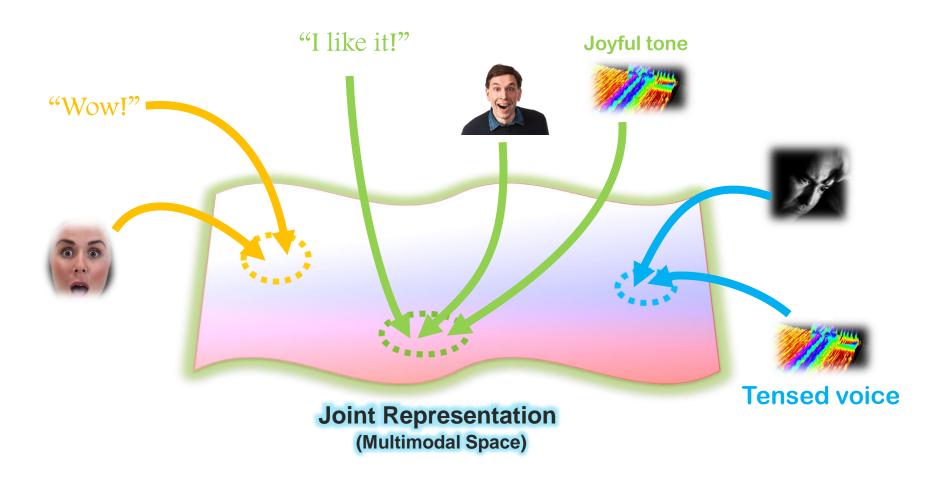
✓ 5 core challenges
✓ 37 taxonomic classes
✓ 253 referenced citations

These challenges are non-exclusive.

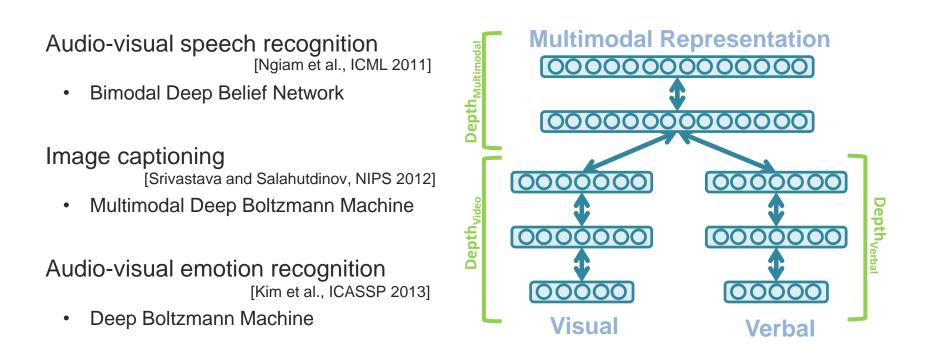
Definition: Learning how to represent and summarize multimodal data in away that exploits the complementarity and redundancy.



Joint Multimodal Representation

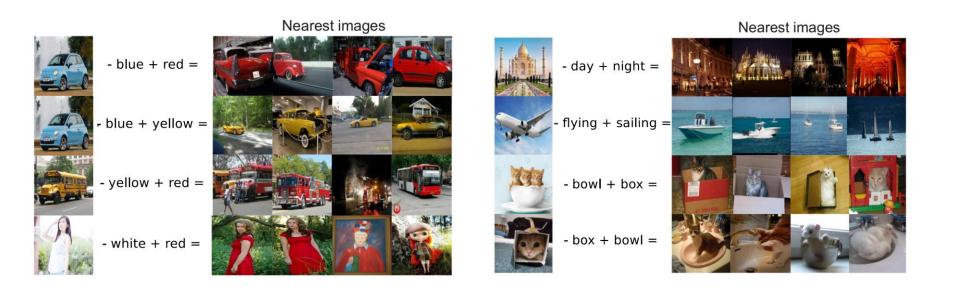


Joint Multimodal Representations



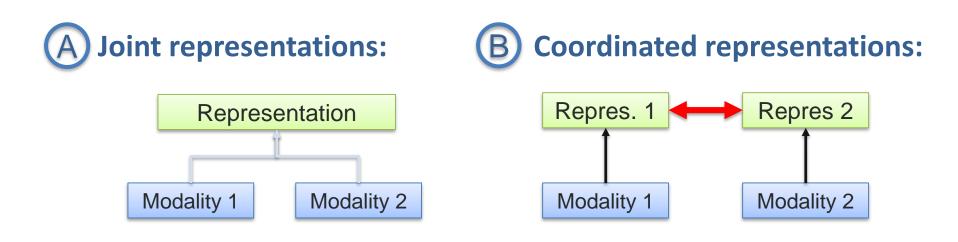
Language Technologies Institute

Multimodal Vector Space Arithmetic



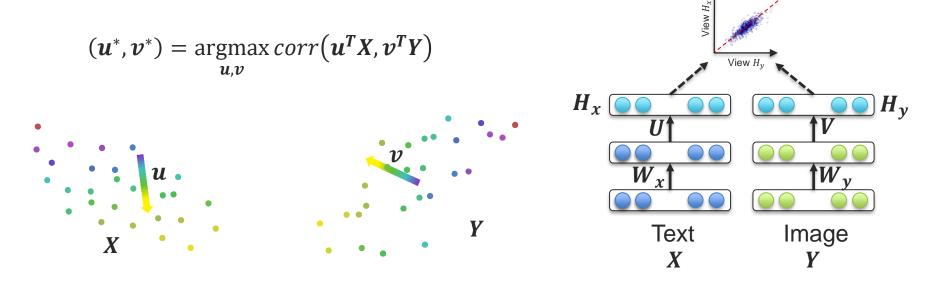
[Kiros et al., Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models, 2014]

Definition: Learning how to represent and summarize multimodal data in away that exploits the complementarity and redundancy.



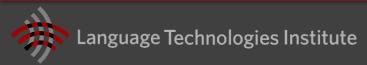
Coordinated Representation: Deep CCA

Learn linear projections that are maximally correlated:



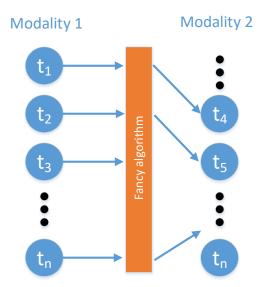
22

Andrew et al., ICML 2013



Core Challenge 2: Alignment

Definition: Identify the direct relations between (sub)elements from two or more different modalities.



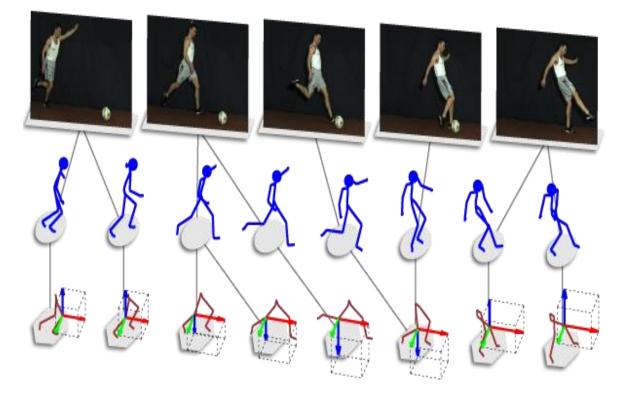
A Explicit Alignment

The goal is to directly find correspondences between elements of different modalities

Implicit Alignment

Uses internally latent alignment of modalities in order to better solve a different problem

Temporal sequence alignment



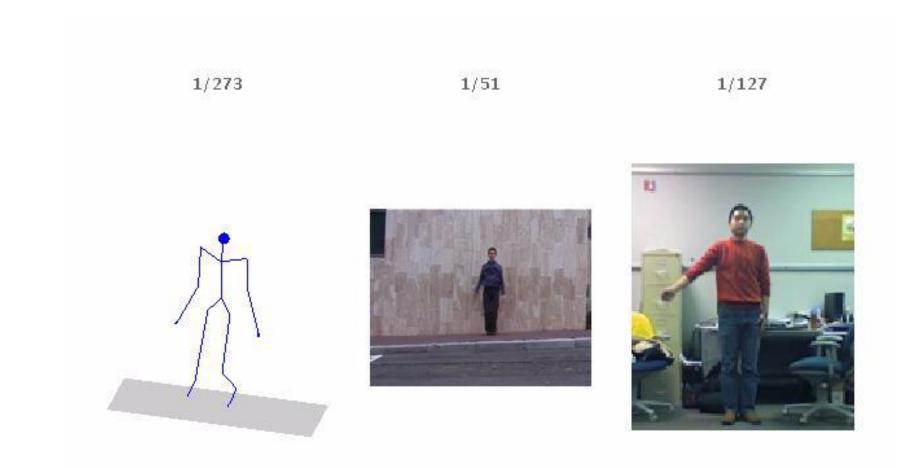
Applications:

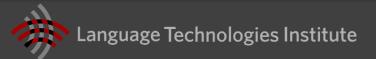
- Re-aligning asynchronous data

- Finding similar data across modalities (we can estimate the aligned cost)

- Event reconstruction from multiple sources

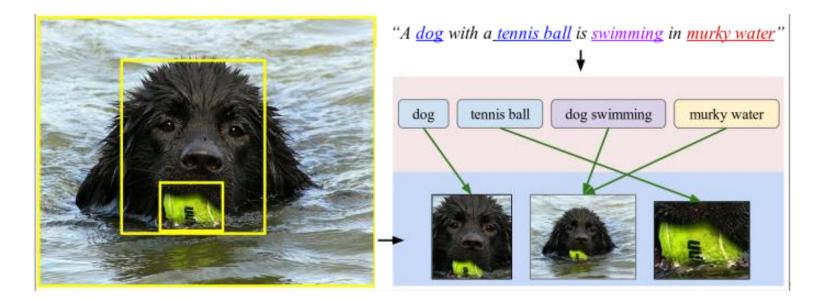
Alignment examples (multimodal)





Carnegie Mellon University

Implicit Alignment

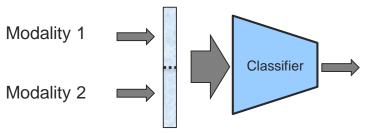


Karpathy et al., Deep Fragment Embeddings for Bidirectional Image Sentence Mapping, https://arxiv.org/pdf/1406.5679.pdf

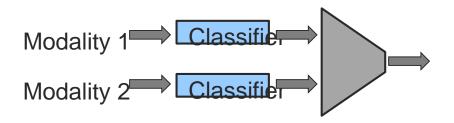
Core Challenge 3: Fusion

Definition: To join information from two or more modalities to perform a prediction task.

1) Early Fusion



2) Late Fusion

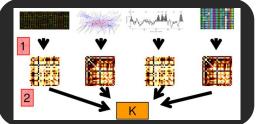


Core Challenge 3: Fusion

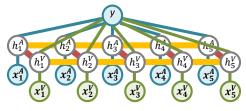
Definition: To join information from two or more modalities to perform a prediction task.

B Model-Based (Intermediate) Approaches

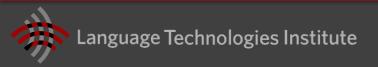
- 1) Deep neural networks
- 2) Kernel-based methods
- 3) Graphical models



Multiple kernel learning

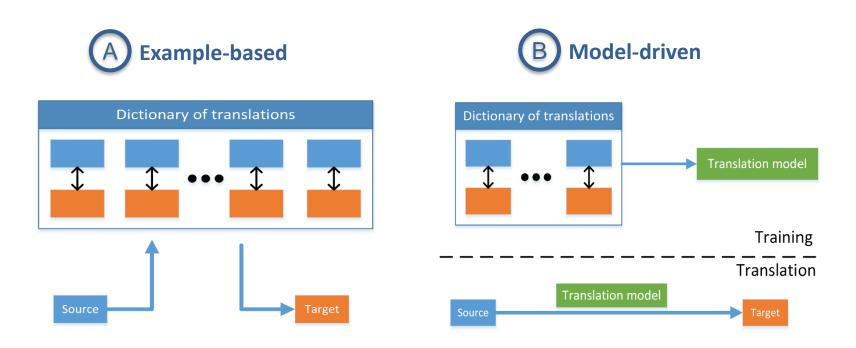


Multi-View Hidden CRF



Core Challenge 4: Translation

Definition: Process of changing data from one modality to another, where the translation relationship can often be open-ended or subjective.



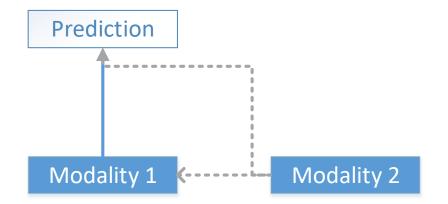
Core Challenge 4 – Translation



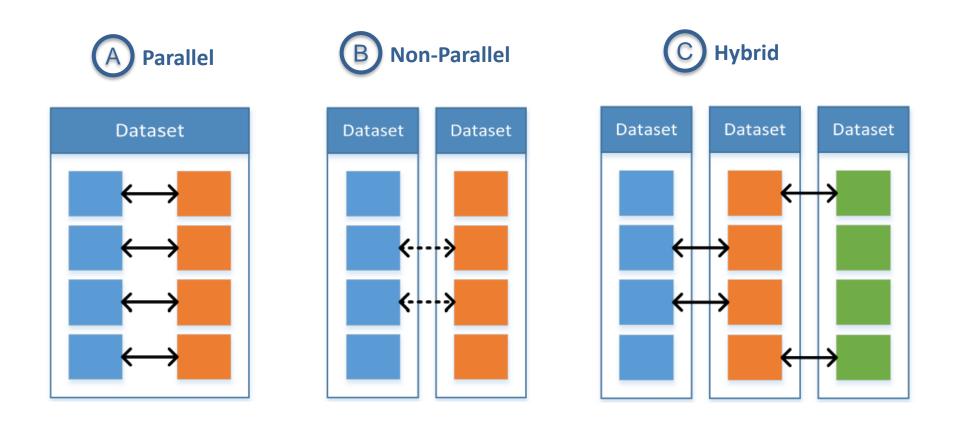
Marsella et al., Virtual character performance from speech, SIGGRAPH/Eurographics Symposium on Computer Animation, 2013

Carnegie Mellon University

Definition: Transfer knowledge between modalities, including their representations and predictive models.



Core Challenge 5: Co-Learning



Taxonomy of Multimodal Research

Representation

- Joint
 - Neural networks
 - Graphical models Ο
 - Sequential Ο
- Coordinated
 - Similarity Ο
 - Structured \bigcirc

Translation

- Example-based
 - Retrieval
 - Combination \bigcirc
- Model-based
 - Grammar-based \bigcirc

- Encoder-decoder
- Online prediction

Alignment

- Explicit
 - Unsupervised
 - Supervised Ο
- Implicit
 - Graphical models
 - Neural networks

Fusion

- Model agnostic
 - Early fusion Ο
 - Late fusion
 - Hybrid fusion Ο

- Model-based
 - Kernel-based \cap
 - Graphical models Ο

[https://arxiv.org/abs/1705.09406]

Neural networks \cap

Co-learning

- Parallel data
 - Co-training Ο
 - Transfer learning Ο
- Non-parallel data
 - Zero-shot learning
 - Concept grounding
 - Transfer learning
- Hybrid data
 - Bridging

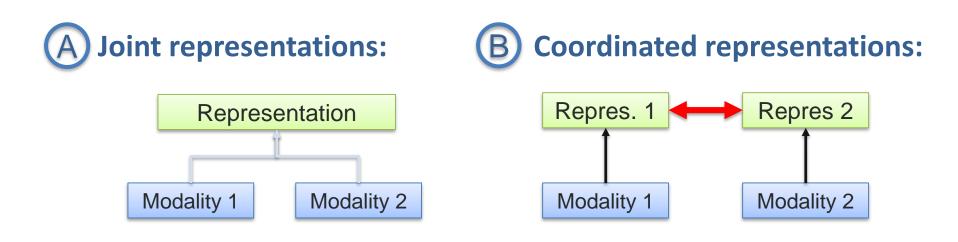
Tadas Baltrusaitis, Chaitanya Ahuja, and Louis-Philippe Morency, Multimodal Machine Learning: A Survey and Taxonomy

	CHALLENGES						
APPLICATIONS	Representation	TRANSLATION	FUSION	Alignment	CO-LEARNING		
Speech Recognition and Synthesis							
Audio-visual Speech Recognition	\checkmark		\checkmark	\checkmark	\checkmark		
(Visual) Speech Synthesis	\checkmark	\checkmark					
Event Detection							
Action Classification	\checkmark		\checkmark		\checkmark		
Multimedia Event Detection	\checkmark		\checkmark		\checkmark		
Emotion and Affect							
Recognition	\checkmark		\checkmark	\checkmark	\checkmark		
Synthesis	\checkmark	\checkmark					
Media Description							
Image Description	\checkmark	\checkmark		\checkmark	\checkmark		
Video Description	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
Visual Question-Answering	\checkmark		\checkmark	\checkmark	\checkmark		
Media Summarization	\checkmark	\checkmark	\checkmark				
Multimedia Retrieval							
Cross Modal retrieval	\checkmark	\checkmark		\checkmark	\checkmark		
Cross Modal hashing	\checkmark				\checkmark		

Tadas Baltrusaitis, Chaitanya Ahuja, and Louis-Philippe Morency, Multimodal Machine Learning: A Survey and Taxonomy

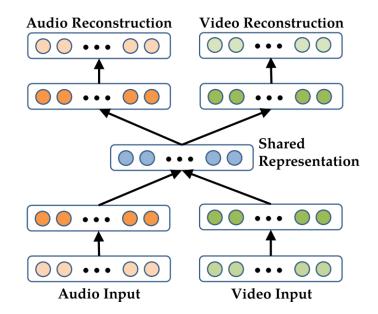
Multimodal Representations

Definition: Learning how to represent and summarize multimodal data in away that exploits the complementarity and redundancy.



Deep Multimodal autoencoders

- A deep representation learning approach
- A bimodal auto-encoder
 - Used for Audio-visual speech recognition

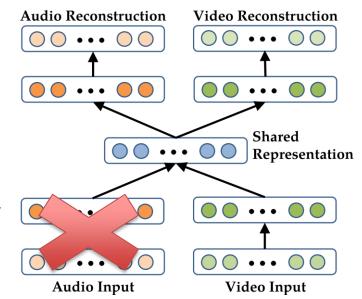


[Ngiam et al., Multimodal Deep Learning, 2011]

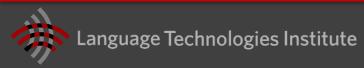


Deep Multimodal autoencoders - training

- Individual modalities can be pretrained
 - RBMs
 - Denoising Autoencoders
- To train the model to reconstruct the other modality
 - Use both
 - Remove audio



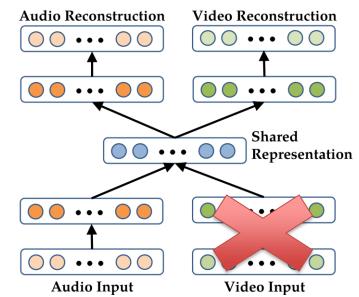
[Ngiam et al., Multimodal Deep Learning, 2011]



Deep Multimodal autoencoders - training

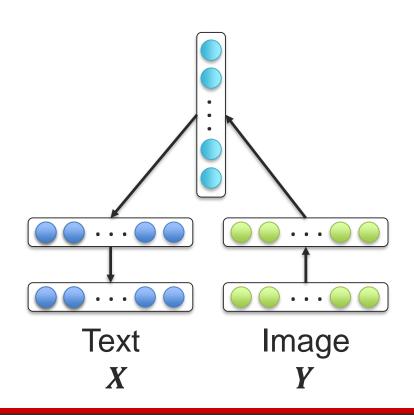
- Individual modalities can be pretrained
 - RBMs
 - Denoising Autoencoders
- To train the model to reconstruct the other modality
 - Use both
 - Remove audio
 - Remove video

[Ngiam et al., Multimodal Deep Learning, 2011]



Multimodal Encoder-Decoder

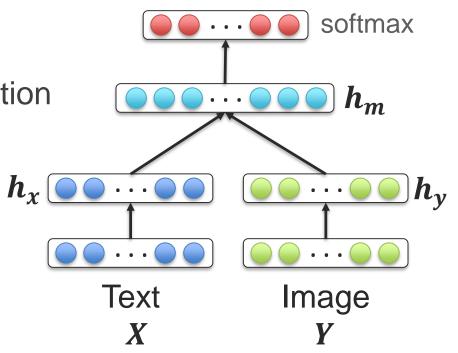
- Visual modality often encoded using CNN
- Language modality will be decoded using LSTM
 - A simple multilayer perceptron will be used to translate from visual (CNN) to language (LSTM)



Multimodal Joint Representation

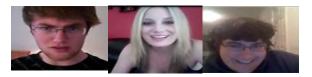
- For supervised learning tasks
- Joining the unimodal representations:
 - Simple concatenation
 - Element-wise multiplication or summation
 - Multilayer perceptron
- How to explicitly model both unimodal and bimodal interactions?

e.g. Sentiment



Multimodal Sentiment Analysis

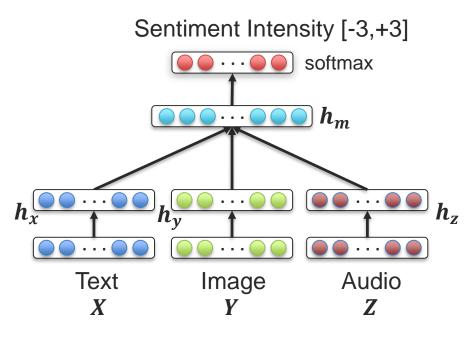
MOSI dataset (Zadeh et al, 2016)

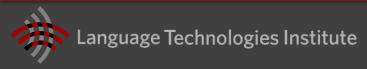


- 2199 subjective video segments
- Sentiment intensity annotations
- 3 modalities: text, video, audio

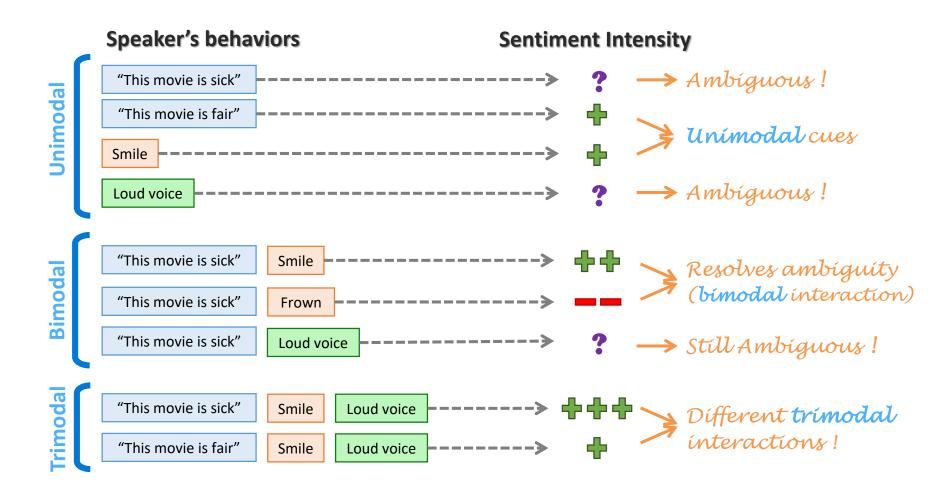
Multimodal joint representation:

$$\boldsymbol{h}_{m} = \boldsymbol{f} \big(\boldsymbol{W} \cdot \big[\boldsymbol{h}_{x}, \boldsymbol{h}_{y}, \boldsymbol{h}_{z} \big] \big)$$





Unimodal, Bimodal and Trimodal Interactions

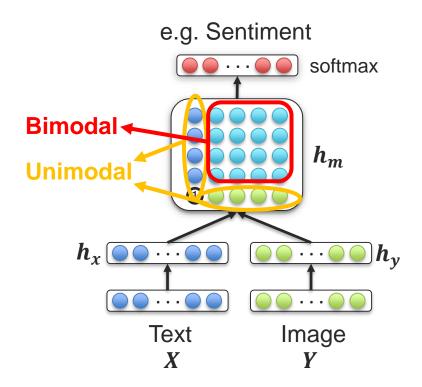


Multimodal Tensor Fusion Network (TFN)

Models both unimodal and bimodal interactions:

$$h_{m} = \begin{bmatrix} h_{x} \\ 1 \end{bmatrix} \otimes \begin{bmatrix} h_{y} \\ 1 \end{bmatrix} = \begin{bmatrix} h_{x} \\ 1 \end{bmatrix} \begin{bmatrix} h_{x} \otimes h_{y} \\ h_{y} \end{bmatrix}$$
Important !

[Zadeh, Jones and Morency, EMNLP 2017]



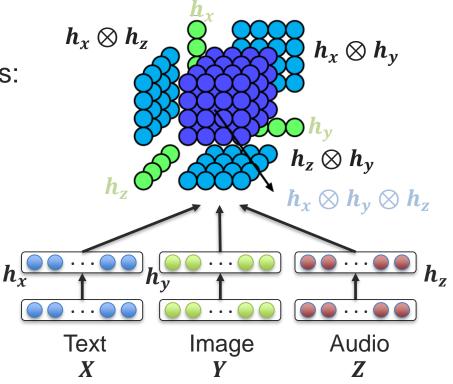
Multimodal Tensor Fusion Network (TFN)

Can be extended to three modalities:

 $\boldsymbol{h}_{m} = \begin{bmatrix} \boldsymbol{h}_{x} \\ 1 \end{bmatrix} \otimes \begin{bmatrix} \boldsymbol{h}_{y} \\ 1 \end{bmatrix} \otimes \begin{bmatrix} \boldsymbol{h}_{z} \\ 1 \end{bmatrix}$

Explicitly models unimodal, bimodal and trimodal interactions !

[Zadeh, Jones and Morency, EMNLP 2017]



Experimental Results – MOSI Dataset

Multimodal Baseline	Binary		5-class	Regression	
	Acc(%)	F1	Acc(%)	MAE	r
Random	50.2	48.7	23.9	1.88	-
C-MKL	73.1	75.2	35.3	-	-
SAL-CNN	73.0	-	-	-	-
SVM-MD	71.6	72.3	32.0	1.10	0.53
RF	714	72.1	31.9	1 1 1	0 51
TFN	77.1	77.9	42.0	0.87	0.70
Human	85.7	87.5	53.9	0.71	0.82
Δ^{SOTA}	↑ 4.0	↑ 2.7	↑ 6.7	↓ 0.23	↑ 0.17

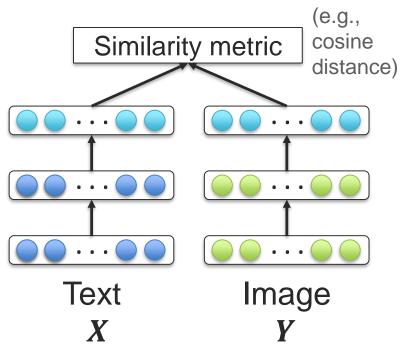
Improvement over State-Of-The-Art

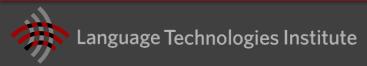
Baseline	Binary		5-class	Regression	
	Acc(%)	F 1	Acc(%)	MAE	r
TFN _{language}	74.8	75.6	38.5	0.99	0.61
TFN _{visual}	66.8	70.4	30.4	1.13	0.48
$\mathrm{TFN}_{a coustic}$	65.1	67.3	27.5	1.23	0.36
TFN _{bimodal}	75.2	76.0	39.6	0.92	0.65
$\mathrm{TFN}_{trimodal}$	74.5	75.0	38.9	0.93	0.65
$\mathrm{TFN}_{notrimodal}$	75.3	76.2	39.7	0.919	0.66
TFN	77.1	77.9	42.0	0.87	0.70
TFN_{early}	75.2	76.2	39.0	0.96	0.63

Language Technologies Institute

Coordinated Multimodal Representations

Learn (unsupervised) two or more coordinated representations from multiple modalities. A loss function is defined to bring closer these multiple representations.





Deep Canonical Correlation Analysis

Same objective function as CCA:

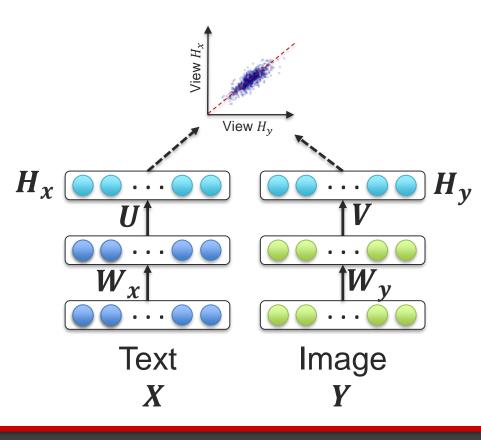
 $\underset{V,U,W_x,W_y}{\operatorname{argmax}} \operatorname{corr}(H_x, H_y)$

Linear projections maximizing correlation

- Orthogonal projections
- Out variance of the projection vectors

Andrew et al., ICML 2013

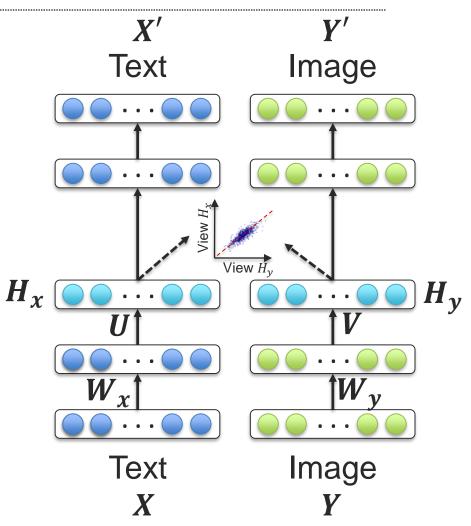
3



Deep Canonically Correlated Autoencoders (DCCAE)

Jointly optimize for DCCA and autoencoders loss functions

A trade-off between multi-view correlation and reconstruction error from individual views



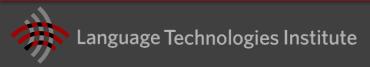
Wang et al., ICML 2015

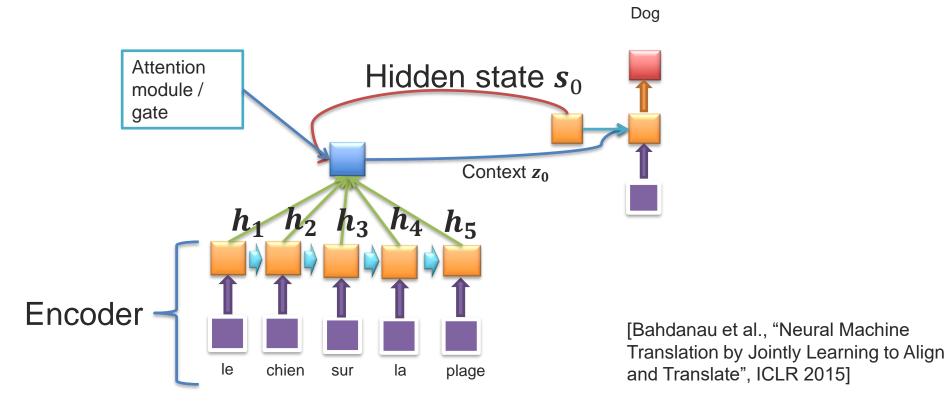
Implicit alignment

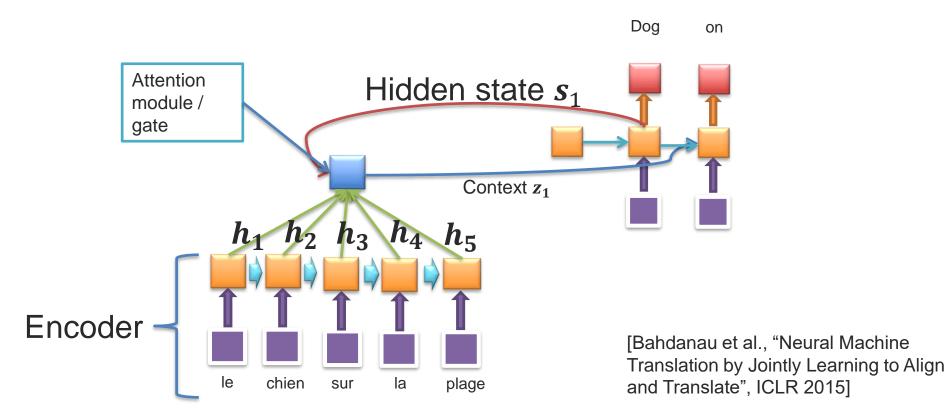
Language Technologies Institute

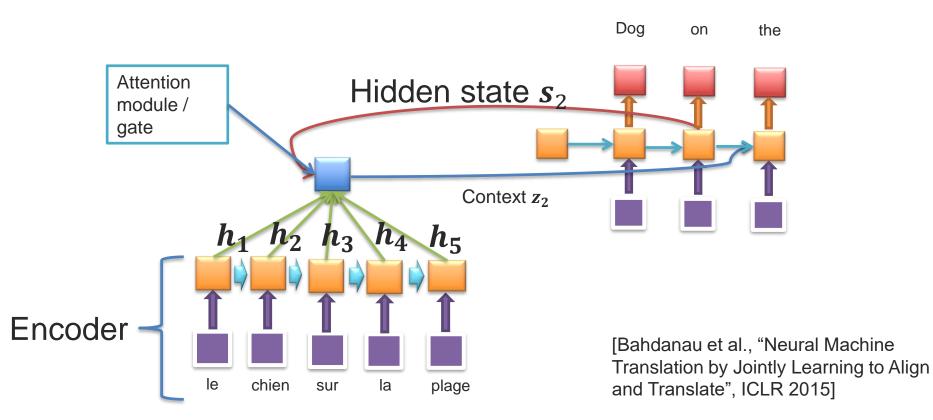
Machine Translation

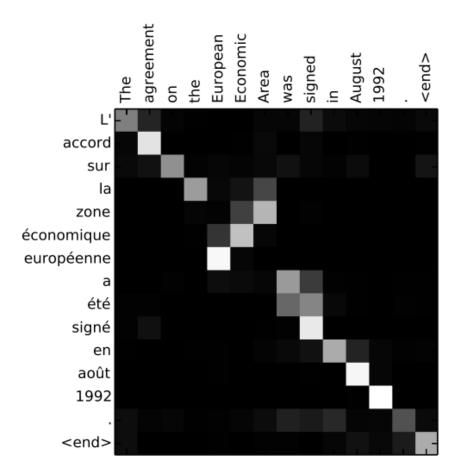
• Given a sentence in one language translate it to another



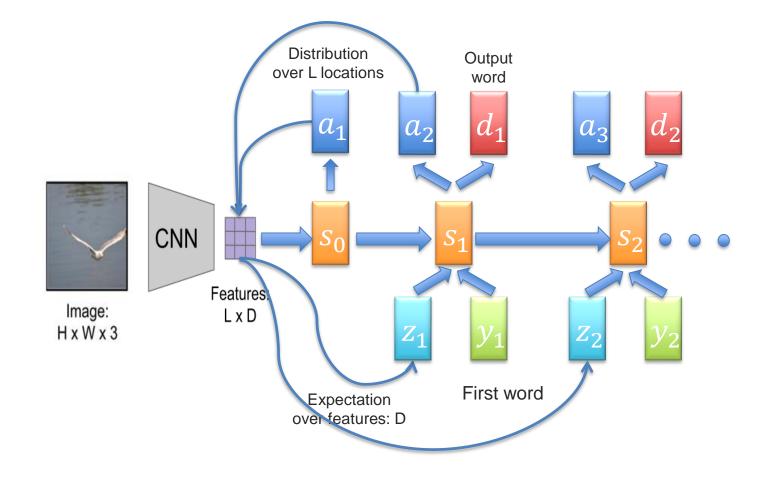






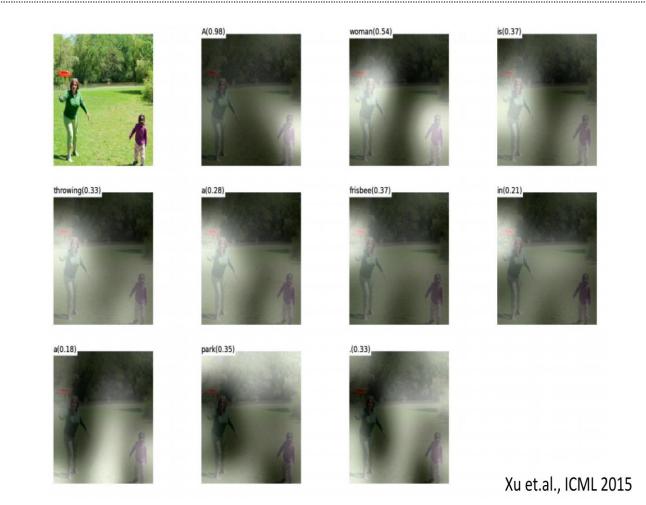


Attention Model for Image Captioning



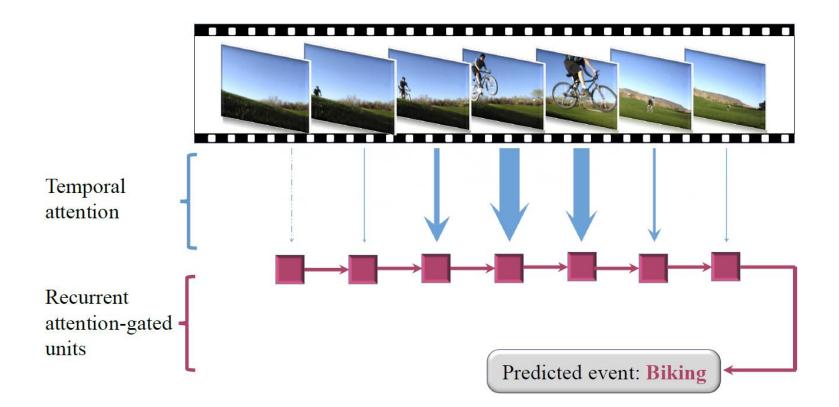
56

Attention Model for Image Captioning



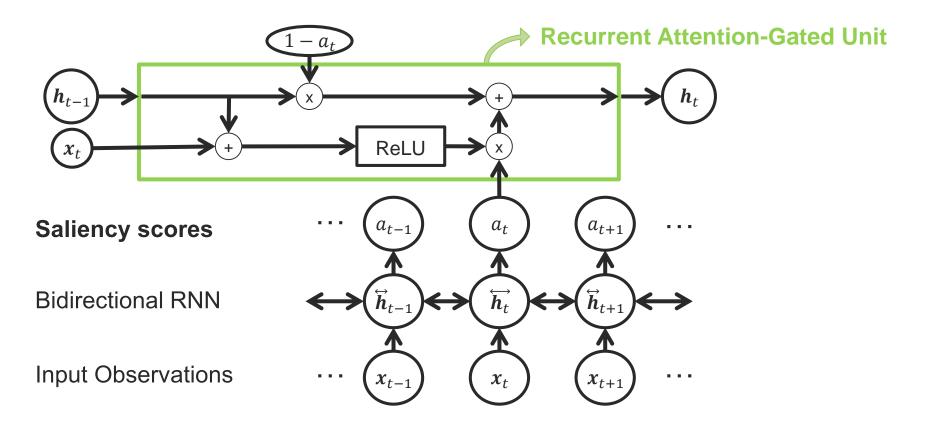
Language Technologies Institute

Attention Model for Video Sequences



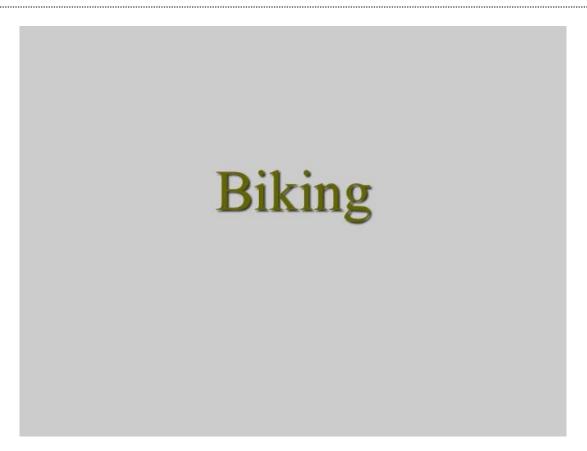
[Pei, Baltrušaitis, Tax and Morency. Temporal Attention-Gated Model for Robust Sequence Classification, **CVPR**, 2017]

Temporal Attention-Gated Model (TAGM)



Language Technologies Institute

Temporal Attention Gated Model (TAGM)

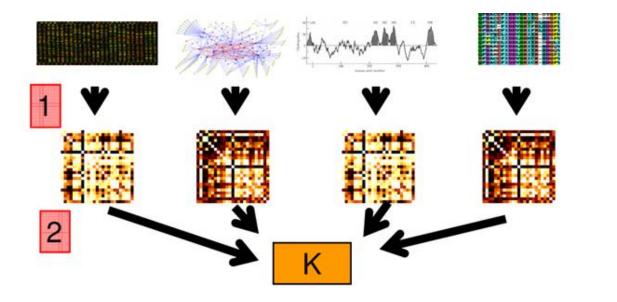


[Pei, Baltrušaitis, Tax and Morency. Temporal Attention-Gated Model for Robust Sequence Classification, **CVPR**, 2017]

Multimodal Fusion

Multiple Kernel Learning

- Pick a family of kernels for each modality and learn which kernels are important for the classification case
- Generalizes the idea of Support Vector Machines
- Works as well for unimodal and multimodal data, very little adaptation is needed



Language Technologies Institute

[Lanckriet 2004]

Multimodal Fusion for Sequential Data

Modality-private structure

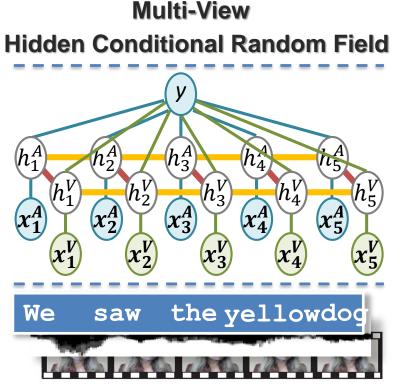
Internal grouping of observations

Modality-shared structure

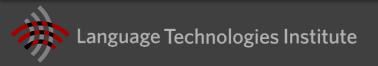
Interaction and synchrony

$$p(y|\mathbf{x}^{A}, \mathbf{x}^{V}; \boldsymbol{\theta}) = \sum_{\mathbf{h}^{A}, \mathbf{h}^{V}} p(y, \mathbf{h}^{A}, \mathbf{h}^{V} | \mathbf{x}^{A}, \mathbf{x}^{V}; \boldsymbol{\theta})$$

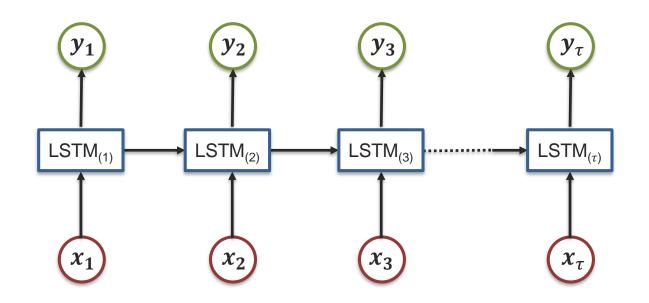
Approximate inference using loopy-belief



[Song, Morency and Davis, CVPR 2012]

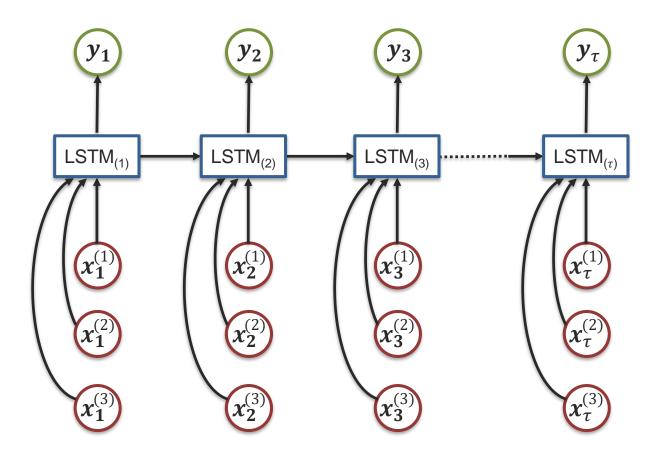


Sequence Modeling with LSTM

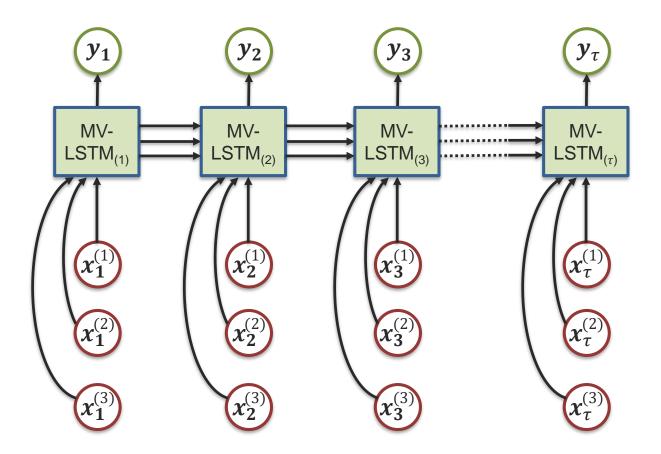




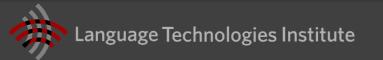
Multimodal Sequence Modeling – Early Fusion



Multi-View Long Short-Term Memory (MV-LSTM)

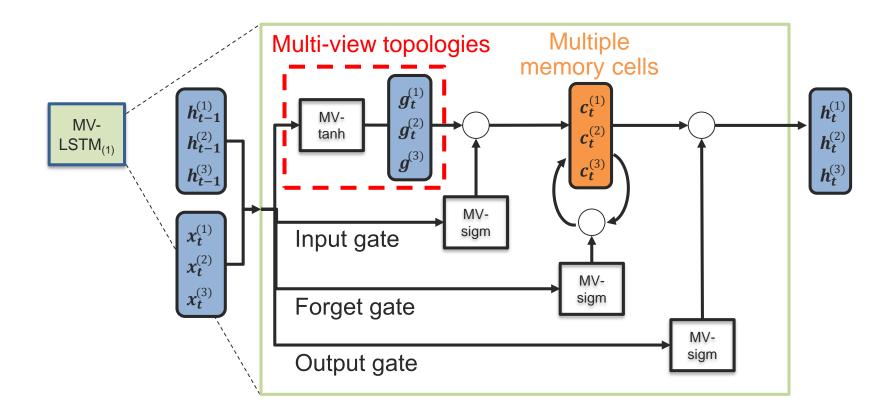


[Shyam, Morency, et al. Extending Long Short-Term Memory for Multi-View Structured Learning, ECCV, 2016]



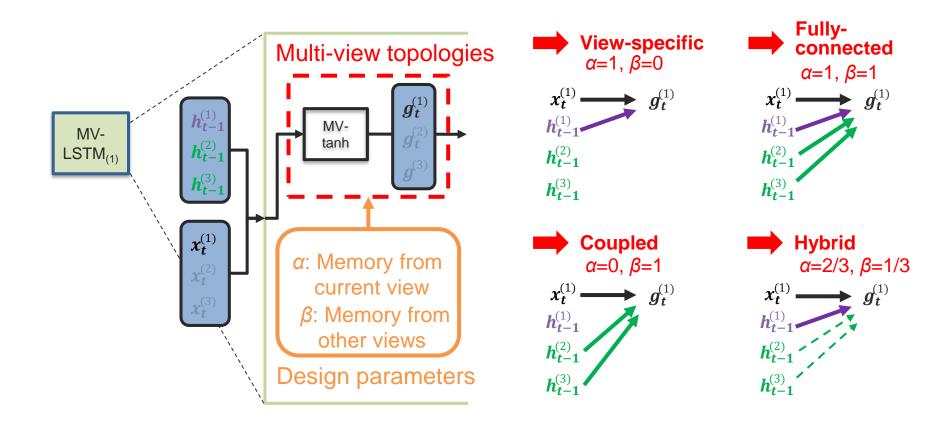
66

Multi-View Long Short-Term Memory



[Shyam, Morency, et al. Extending Long Short-Term Memory for Multi-View Structured Learning, ECCV, 2016]

Topologies for Multi-View LSTM



[Shyam, Morency, et al. Extending Long Short-Term Memory for Multi-View Structured Learning, ECCV, 2016]

Multi-View Long Short-Term Memory (MV-LSTM)

Multimodal prediction of children engagement

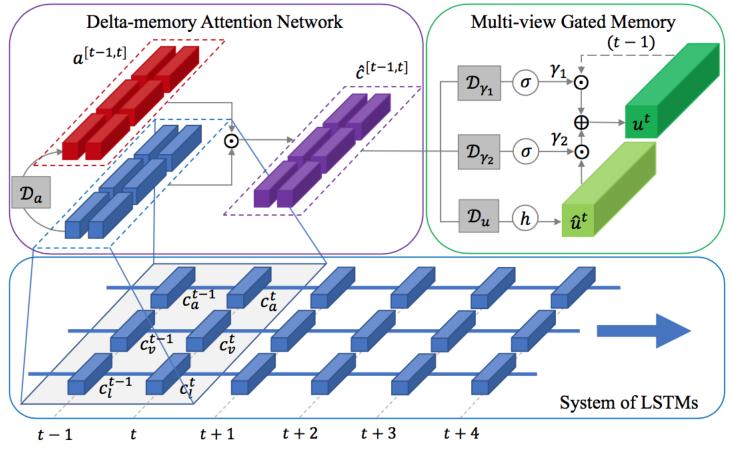
Class labels	Model	Precision	Recall	F1
Easy to engage	LSTM (Early fusion)	0.75	0.81	0.78
	MV-LSTM Full	0.81	0.81	0.81
	MV-LSTM Coupled	0.79	0.81	0.80
	MV-LSTM Hybrid	0.80	0.86	0.83
Difficult to engage	LSTM (Early fusion)	0.63	0.55	0.59
	MV-LSTM Full	0.68	0.68	0.68
	MV-LSTM Coupled	0.67	0.64	0.65
	MV-LSTM Hybrid	0.74	0.64	0.68

[Shyam, Morency, et al. Extending Long Short-Term Memory for Multi-View Structured Learning, ECCV, 2016]

Memory Based

- A memory accumulates multimodal information over time.
- From the representations throughout a source network.
- No need to modify the structure of the source network, only attached the memory.

Memory Based



[Zadeh et al., Memory Fusion Network for Multi-view Sequential Learning, AAAI 2018]

Multimodal Machine Learning

Representation

Alignment

Fusion

Translation

Co-Learning

Multimodal Machine Learning: A Survey and Taxonomy

By Tadas Baltrusaitis, Chaitanya Ahuja, and Louis-Philippe Morency

https://arxiv.org/abs/1705.09406

✓ 5 core challenges
✓ 37 taxonomic classes
✓ 253 referenced citations

