
CS11-747 Neural Networks for NLP

Advanced Search
Algorithms

Daniel Clothiaux
https://phontron.com/class/nn4nlp2017/

https://phontron.com/class/nn4nlp2017/

Why search?

• So far, decoding has mostly been greedy

• Chose the most likely output from softmax, repeat

• Can we find a better solution?

• Oftentimes, yes!

Basic Search Algorithms

Beam Search

• Instead of picking the highest probability/score,
maintain multiple paths

• At each time step

• Expand each path

• Choose top n paths from the expanded set

Why will this help
Next word P(next word)

Pittsburgh 0.4

New York 0.3

New Jersey 0.25

Other 0.05

Potential Problems
• Unbalanced action sets

• Larger beam sizes may be significantly slower

• Lack of diversity in beam

• Outputs of Variable length

• Will not always improve evaluation metric

Dealing with disparity in actions
Effective Inference for Generative Neural Parsing

(Mitchell Stern et al., 2017)

• In generative parsing there are Shifts (or
Generates) equal to the vocabulary size

• Opens equal to # of labels

Solution
• Group sequences of actions of the same length

taken after the ith Shift.

• Create buckets based off of the number of Shifts
and actions after the Shift

• Fast tracking:

• To further reduce comparison bias, certain Shifts
are immediately added to the next bucket

Pruning

• Expanding each path with large beams is slow

• Pruning the search tree speeds things up

• Remove paths from the tree

• Predict what paths to expand

Threshold based pruning
‘Google’s Neural Machine Translation System: Bridging the Gap

between Human and Machine Translation’ (Y Wu et al. 2016)

• Compare the path score with best path score

• Compare expanded node score with best node

• If either falls beneath threshold, drop them

Predict what nodes to
expand

• Effective Inference for Generative Neural Parsing (Stern et
al., 2017):

• a simple feed forward network predicts actions to prune

• This works well in parsing, as most of the possible
actions are Open, vs. a few Closes and one Shift

• Transition-Based Dependency Parsing with Heuristic
Backtracking

• Early cutoff based off of single Stack LSTM

Backtrack to points most likely to be wrong
Transition-Based Dependency Parsing with Heuristic Backtracking (Buckman et al,

2016)

Improving Diversity in top N Choices
Mutual Information and Diverse Decoding Improve Neural Machine

Translation (Li et al., 2016)

• Entries in the beam can be very similar

• Improving the diversity of the top N list can help

• Score using source->target and target-> source translation
models, language model

Improving Diversity through Sampling
Generating High-Quality and Informative Conversation Responses

with Sequence-to-Sequence Models (Shao et al., 2017)

• Stochastically sampling from the softmax gives
great diversity!

• Unlike in translation, the distributions in
conversation are less peaky

• This makes sampling reasonable

Variable length output
sequences

• In many tasks (eg. MT), the output sequences will be of
variable length

• Running beam search may then favor short sentences

• Simple idea:

• Normalize by the length-divide by |N|

• On the Properties of Neural Machine Translation:
Encoder–Decoder (Cho et al., 2014)

• Can we do better?

More complicated normalization
‘Google’s Neural Machine Translation System: Bridging the Gap

between Human and Machine Translation’ (Y Wu et al. 2016)

• X,Y: source, target sentence

• α: 0 < α < 1, normally in [0.6, 0.7]

• β: coverage penalty

• This is found empirically

Predict the output length
Tree-to-Sequence Attentional Neural Machine Translation

(Eriguchi et al. 2016)

• Add a penalty based off of length differences
between sentences

• Calculate P(len(y) | len(x)) using corpus statistics

What beam size should I
use?

• Larger beam sizes will be slower, and may not give
better results

• Mostly done empirically-experiment!

• Many papers use less than 15, but I’ve seen as
high as 1000

Beam Search-Benefits and
Drawbacks

• Benefits:

• Generally easy to implement off of an existing model

• Guaranteed to not decrease model score

• Otherwise, something’s wrong

• Drawbacks

• Larger beam sizes may be significantly slower

• Will not always improve evaluation metric

• Depending on how complicated you want to get, there will be a few
more hyper-parameters to tune

Using beam search in training
Sequence-to-Sequence Learning

as Beam-Search Optimization (Wiseman et al., 2016)
• Decoding with beam search has biases

• Exposure: Model not exposed to errors during training

• Label: scores are locally normalized

• Possible solution: train with beam search

More beam search in training
A Continuous Relaxation of Beam Search for End-to-end
Training of Neural Sequence Models (Goyal et al., 2017)

A* algorithms

A* search

• Basic idea:

• Iteratively expand paths that have the cheapest
total cost along the path

• total cost = cost to current point + estimated cost
to goal

• f(n) = g(n) + h(n)

• g(n): cost to current point

• h(n): estimated cost to goal

• h should be admissible and consistent

Classical A* parsing
A* Parsing: Fast Exact Viterbi Parse Selection (Klein et

al., 2003)
• PCFG based parser

• Inside (g) and outside (h) scores are maintained

• Inside: cost of building this constituent

• Outside: cost of integrating constituent with rest of tree

Adoption with neural networks:
CCG Parsing

LSTM CCG Parsing (Lewis et al. 2014)

• A* for parsing

• g(n): sum of encoded LSTM scores over current
span

• h(n): sum of maximum encoded scores for each
constituent outside of current span

CCG Parsing:

Is the heuristic admissible?
Global Neural CCG Parsing with Optimality Guarantees

(Lee et al. 2016)
• No!

• Fix this by adding a global model score < 0 to the elements outside of the current
span

• This makes the estimated cost lower than the actual cost

• Global model: tree LSTM over completed parse

• This is significantly slower than the embedding LSTM, so first evaluate g(n),
then lazily expand good scores

Estimating future costs
Learning to Decode for Future Success (Li et al., 2017)

A* search: benefits and
drawbacks

• Benefits:

• With heuristic, has nice optimality guarantees

• Strong results in CCG parsing

• Drawbacks:

• Needs more construction than beam search, can’t
easily throw on existing model

• Requires a good heuristic for optimality guarantees

Other search
algorithms

Particle Filters
A Bayesian Model for Generative Transition-based

Dependency Parsing (Buys et al., 2015)
• Similar to beam search

• Think of it as beam search with a width that depends on
certainty of it’s paths

• More certain, smaller, less certain, wider

• There are k total particles

• Divide particles among paths based off of probability of
paths, dropping any path that would get <1 particle

• Compare after the same number of Shifts

Reranking
Recurrent Neural Network Grammars

(Dyer et al. 2016)
• If you have multiple different models, using one to rerank outputs can

improve performance

• Classically: use a target language language model to rerank the best
outputs from an MT system

• Going back to the generative parsing problem, directly decoding from a
generative model is difficult

• However, if you have both a generative model B and a discriminative
model A

• Decode with A then rerank with B

• Results are superior to decoding then reranking with a separately
trained B

Monte-Carlo Tree Search
Human-like Natural Language Generation Using

Monte Carlo Tree Search

