CS11-747 Neural Networks for NLP

Advanced Search
Algorithms

Daniel Clothiaux
hitps://phontron.com/class/nn4nlp2017//

/\

.arnegie Vellon University
Language
Technologies
Institute

https://phontron.com/class/nn4nlp2017/

Why search®

* S0 far, decoding has mostly been greedy
* Chose the most likely output from softmax, repeat
 Can we find a better solution”

e Oftentimes, yes!

Basic Search Algorithms

Beam Search

Instead of picking the highest probability/score,
maintain multiple paths

At each time step
* Expand each path

* Choose top n paths from the expanded set

--

— /" .3.00 s
1.05 '@ K>
/ -0.92 -1.84
hap T -0.92
=52 "R 069 X
. oA -1.39 _ -1.61 -1.61
1.3 \\%— ~a] 0 wkis>
2.30\ 3.2

Whny will this help

Next word P(next word)

Pittsburgh

New York

New Jersey

Other

Potential Problems

Unbalanced action sets

Larger beam sizes may be significantly slower
Lack of diversity in beam

Outputs of Variable length

* Will not always improve evaluation metric

Dealing with disparity in actions

Effective Interence tor Generative Neural Parsing
(Mitchell Stern et al., 2017)

In generative parsing there are Shifts (or
Generates) equal to the vocabulary size

Opens equal to # of labels

S (S (NP He NP)(VP had(\l an idea V!)\"I’J . S)

NP VP . 08
| N '
He had NP
/N
an idea
(S (NP He NP) (VP had (NP an idea NP) VP) . S) 3940

Solution

* (Group sequences of actions of the same length
taken after the th Shift.

e Create buckets based off of the number of Shifts
and actions after the Shift

* Fast tracking:

* Jo further reduce comparison bias, certain Shifts
are Immediately added to the next bucket

(i+1,0)

(,1) (1,2)

(i,0)

QP

(

-+ had

-~ had

-+ had

fast-track

top-&

Pruning

 Expanding each path with large beams is slow
* Pruning the search tree speeds things up
* Remove paths from the tree

* Predict what paths to expand

Threshold based pruning

‘Google’s Neural Machine Translation System: Bridging the Gap
between Human and Machine Translation” (Y Wu et al. 2016)

 Compare the path score with best path score
 Compare expanded node score with best node

* |f either talls beneath threshold, drop them

Predict what nodes to
expand

e Effective Inference for Generative Neural Parsing (Stern et
al., 2017):

e asimple feed forward network predicts actions to prune

e This works well in parsing, as most of the possible
actions are Open, vs. a few Closes and one Shift

* [ransition-Based Dependency Parsing with Heuristic
Backtracking

o Early cutoff based off of single Stack LSTM

Backtrack to points most likely to be wrong

Transition-Based Dependency Parsing with Heuristic Backtracking (Buckman et al,

2016)

Q\ (DD -
C§ 0—0\0
()

(a) Beam Search (b) Dynamic Beam Search
@ W= - @
OaNOruOE ORNO
@ % @
- (@

(c) Selectional Branching (d) Heuristic Backtracking

Improving Diversity in top N Choices

Mutual Information and Diverse Decoding Improve Neural Machine
Translation (Li et al., 2016)

* Entries in the beam can be very similar
* Improving the diversity of the top N list can help

e Score using source->target and target-> source translation
models, language model

5 & Vv § @ Vv
T -1.5-1.0=-2.5 : Y N 1.5-1.0-1=-3.5 :
b -15 s v i 15 has) :

1.5-1.3=-2.8 { ; 1.5-1.3-2=-4.8
| (is) 5 5 ® .
| 2.2:0.8=-3.0 : P g 2.2-081=-40 !
o ; . :
, _} has ¢ 2.2 lbas
: 2.2-1.1=-3.3 ; 5 2.211-2=-53 !

Standard Beam Search Diversity Promoting Beam Search (y setto 1)

Improving Diversity through Sampling
Generating High-Quality and Informative Conversation Responses
with Sequence-to-Sequence Models (Shao et al., 2017)

e Stochastically sampling from the softmax gives
great diversity!

e Unlike In translation, the distributions In
conversation are less peaky

* This makes sampling reasonable

Variable length output
seqguences

* In many tasks (eg. MT), the output sequences will be of
variable length

* Running beam search may then favor short sentences
 Simple idea:
* Normalize by the length-divide by |N|

* On the Properties of Neural Machine Translation:
Encoder-Decoder (Cho et al., 2014)

e Can we do better?

More complicated normalization

‘Google’s Neural Machine Translation System: Bridging the Gap
between Human and Machine Translation’” (Y Wu et al. 2016)

s(Y, X) =log(P(YX))/Ip(Y) + ep(X; Y)
(54 [Y])”
(54 1)«
| X| Y|

ep(X;Y) =08+ Z log(min(z Pi.iy 1.0)),
i=1 j=1

Ip(Y) =

X,Y: source, target sentence

a:0<a< 1, normally in [0.6, 0.7]

e (3: coverage penalty

This is found empirically

Predict the output length

Tree-to-Sequence Attentional Neural Machine Translation
(Eriguchi et al. 20106)

* Add a penalty based off of length differences
between sentences

* Calculate P(len(y) | len(x)) using corpus statistics

score(x,y) = Lgqy + Zlogp(yjly..-_-j,m),

Loy = logp(len(y)|len(x)),

What beam size should |
use”’

* Larger beam sizes will be slower, and may not give
better results

* Mostly done empirically-experiment!

* Many papers use less than 15, but I've seen as
high as 1000

Beam Search-Benefits and
Drawbacks

» Benefits:
* Generally easy to implement off of an existing model
» (Guaranteed to not decrease model score
« Otherwise, something’s wrong
 Drawbacks
» Larger beam sizes may be significantly slower
o Will not always improve evaluation metric

* Depending on how complicated you want to get, there will be a few
more hyper-parameters to tune

Using beam search in training

Seqguence-to-sequence Learning
as Beam-Search Optimization (Wiseman et al., 2016)

* Decoding with beam search has biases
* Exposure: Model not exposed to errors during training
 Label: scores are locally normalized

e Possible solution: train with beam search

More beam search in training

A Continuous Relaxation of Beam Search for End-to-end
Training of Neural Sequence Models (Goyal et al., 2017)

P1
|
ontinuous-too-k a Beam Hecurrence |
continuous-too-k-argmax - hl,-i-l,l
/——J \,
/) |
/ o
// ™ P — Beam Rezurrence A — » |
\\\\ l\\ . |
N :
N > 5 '
—] / 5 |
‘olu ml
¢ ? | G
? |
i |
P2 f l
i |
Row-sum | — — — = = =" =
: \ A
i L] by o
X h o
deghtod Linear Combination

A™ algorithms

A” search

e Basic idea:

* |teratively expand paths that have the cheapest
total cost along the path

* total cost = cost to current point + estimated cost
to goal

* 1(n) =g(n) + h(n)
* g(n): cost to current point

* h(n): estimated cost to goal

* h should be admissible and consistent

Classical A* parsing

A* Parsing: Fast Exact Viterbi Parse Selection (Klein et
al., 2003)

* PCFG based parser
* Inside (g) and outside (h) scores are maintained
* Inside: cost of building this constituent

e Qutside: cost of integrating constituent with rest of tree
s:[g.n;

(a) (b)

Figure 1: A* edge costs. (a) The cost of an edge X is a com-
bination of the cost to build the edge (the Viterbi inside score
B) and the cost to incorporate it into a root parse (the Viterbi
outside score «). (b) In the corresponding hypergraph, we have
exact values for the inside score from the explored hyperedges
(solid lines), and use upper bounds on the cutside score, which
estimate the dashed hyperedges.

Adoption with neural networks:
CCG Parsing

LSTM CCG Parsing (Lewis et al. 2014)

I saw squirrels with nuts | saw squirrels with binocular:

C C G P " . NP (S\NP)/NP NP (NP\NP)/NP NP NP (§\NP)/NP NP ((S\NP)\(S\NP)/NP ~ NP
a I'SI ﬂ g . NP\NP S\NP i (S\NP)\(S\NP) "

NP S\NP
S\NP ' S
3
houses in suburbs of Paris
houses in suburbs of Paris - — - | — — -
— e —— NP (NP\NP)/NP NP (NP\NP)/NP NP
NP (NP\NP)/NP NP (NP\NP)/NP NP ' ' ' —
AN o\) NP NP
NP\NP NP\NP '
. NP
NP
NP\NP
NP

NP

e A* for parsing

* g(n): sum of encoded LSTM scores over current
span

* Nh(N): sum of maximum encoded scores for each
constituent outside of current span

'S the heuristic admissible”

Global Neural CCG Parsing with Optimality Guarantees
(Lee et al. 2016)

 No!

e Fix this by adding a global model score < 0O to the elements outside of the current
span

* This makes the estimated cost lower than the actual cost
e Global model: tree LSTM over completed parse

e This is significantly slower than the embedding LSTM, so first evaluate g(n),
then lazily expand good scores

OO0—QO)|
f
S
08—0%
NP S\NP
@e—C® O@—00 @8—00
NP

IS @ R @O g T

Qo

Fruit

/

R

flies

S\NP)/NP ‘

e

like

bananas

Estimating future costs

Learning to Decode for Future Success (Li et al., 2017)

4 N=2 N=1 N=0 N\

Training Future Q t t t
Soothsayer Network Q for Length

Encoder (e00e seee coco suaon ooool f \
\ Decoder) Decoding Time A -1Q(A)-L|*2+logP(A)
Encoder —+ sooe
I'm fine . EOT I
Training Seq2Seq T 1 T T B - Q(B)-L|*2+logP(B)
Softmax logP
Encoder —= sse e YL »—40000. soaoe Y11, K ‘/
Decoderj I I r
0.... [.... 0000] '0000'

\ EOS Fm fine . /

A* search: benefits and
drawbacks

* Benetits:
* With heuristic, has nice optimality guarantees
e Strong results in CCG parsing

* Drawbacks:

e Needs more construction than beam search, can't
easily throw on existing model

 Requires a good heuristic for optimality guarantees

Other search
algorithms

Particle Filters

A Bayesian Model for Generative Transition-based
Dependency Parsing (Buys et al., 2015)
e Similar to beam search

* Think of it as beam search with a width that depends on
certainty of it's paths

e More certain, smaller, less certain, wider

 There are k total particles

e Divide particles among paths based off of probability of
paths, dropping any path that would get <1 particle

 Compare after the same number of Shifts

Reranking

Recurrent Neural Network Grammars
(Dyer et al. 2016)

It you have multiple different models, using one to rerank outputs can
improve performance

Classically: use a target language language model to rerank the best
outputs from an MT system

Going back to the generative parsing problem, directly decoding from a
generative model is difficult

However, if you have both a generative model B and a discriminative
model A

e Decode with A then rerank with B

e Results are superior to decoding then reranking with a separately
trained B

Monte-Carlo Tree Search

Human-like Natural Language Generation Using
Monte Carlo Tree Search

Syntactic rule S(start symbol) is assigned

] to the root node.

................. Based on the UCB1 value,
S—NPVP l/\ 5 a syntactic rule applicable from the root node is selected.

I »
UCB=v,+C_ [28N
‘ n'

NP_NN VP v = o
p vp { ...wunmg ratio
2. N . the total number of simulations

N, . the number of visits
O’g} A new node is generated.

S
—

] NP_NN VP

From the node generated in Step 3,
NP syntactic rules are applied randomly
VBD —— | until all symbols become

! D|T N|N terminal symbols.
man Saw

the girl

By comparing between
&% the score of a generated sentence (recount in chapter 3)

and the average of the other candidates’ scores,
sCore
\/ the result either win/lose is returned to all the nodes

to the root node and the wining ratio is updated.

] average

\ from Step2 to Step5 have run,
the child node which is most visited becomes the next root node.

] After a certain number of simulations
The algorithm then returns to Step2.

