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Why search?

• So far, decoding has mostly been greedy 

• Chose the most likely output from softmax, repeat 

• Can we find a better solution? 

• Oftentimes, yes!



Basic Search Algorithms



Beam Search

• Instead of picking the highest probability/score, 
maintain multiple paths 

• At each time step 

• Expand each path 

• Choose top n paths from the expanded set





Why will this help
Next word P(next word)

Pittsburgh 0.4

New York 0.3

New Jersey 0.25

Other 0.05



Potential Problems
• Unbalanced action sets 

• Larger beam sizes may be significantly slower 

• Lack of diversity in beam 

• Outputs of Variable length 

• Will not always improve evaluation metric



Dealing with disparity in actions 
Effective Inference for Generative Neural Parsing 

(Mitchell Stern et al., 2017)

• In generative parsing there are Shifts (or 
Generates) equal to the vocabulary size  

• Opens equal to # of labels



Solution
• Group sequences of actions of the same length 

taken after the ith  Shift. 

• Create buckets based off of the number of Shifts 
and actions after the Shift 

• Fast tracking: 

• To further reduce comparison bias, certain Shifts 
are immediately added to the next bucket





Pruning

• Expanding each path with large beams is slow 

• Pruning the search tree speeds things up 

• Remove paths from the tree 

• Predict what paths to expand



Threshold based pruning  
‘Google’s Neural Machine Translation System: Bridging the Gap 

between Human and Machine Translation’  (Y Wu et al. 2016)

• Compare the path score with best path score 

• Compare expanded node score with best node 

• If either falls beneath threshold, drop them



Predict what nodes to 
expand

• Effective Inference for Generative Neural Parsing (Stern et 
al., 2017): 

• a simple feed forward network predicts actions to prune 

• This works well in parsing, as most of the possible 
actions are Open, vs. a few Closes and one Shift 

• Transition-Based Dependency Parsing with Heuristic 
Backtracking 

• Early cutoff based off of single Stack LSTM



Backtrack to points most likely to be wrong 
Transition-Based Dependency Parsing with Heuristic Backtracking (Buckman et al, 

2016)



Improving Diversity in top N Choices 
Mutual Information and Diverse Decoding Improve Neural Machine 

Translation (Li et al., 2016)

• Entries in the beam can be very similar 

• Improving the diversity of the top N list can help 

• Score using source->target and target-> source translation 
models, language model



Improving Diversity through Sampling 
Generating High-Quality and Informative Conversation Responses 

with Sequence-to-Sequence Models (Shao et al., 2017)

• Stochastically sampling from the softmax gives 
great diversity! 

• Unlike in translation, the distributions in 
conversation are less peaky 

• This makes sampling reasonable



Variable length output 
sequences

• In many tasks (eg. MT), the output sequences will be of 
variable length 

• Running beam search may then favor short sentences 

• Simple idea: 

• Normalize by the length-divide by |N| 

• On the Properties of Neural Machine Translation: 
Encoder–Decoder (Cho et al., 2014) 

• Can we do better?



More complicated normalization 
‘Google’s Neural Machine Translation System: Bridging the Gap 

between Human and Machine Translation’  (Y Wu et al. 2016)

• X,Y: source, target sentence 

• α: 0 < α < 1, normally in [0.6, 0.7] 

• β: coverage penalty 

• This is found empirically



Predict the output length 
Tree-to-Sequence Attentional Neural Machine Translation 

(Eriguchi et al. 2016)

• Add a penalty based off of length differences 
between sentences 

• Calculate P(len(y) | len(x)) using corpus statistics



What beam size should I 
use?

• Larger beam sizes will be slower, and may not give 
better results 

• Mostly done empirically-experiment! 

• Many papers use less than 15, but I’ve seen as 
high as 1000



Beam Search-Benefits and 
Drawbacks

• Benefits: 

• Generally easy to implement off of an existing model 

• Guaranteed to not decrease model score 

• Otherwise, something’s wrong 

• Drawbacks 

• Larger beam sizes may be significantly slower 

• Will not always improve evaluation metric 

• Depending on how complicated you want to get, there will be a few 
more hyper-parameters to tune



Using beam search in training 
Sequence-to-Sequence Learning 

as Beam-Search Optimization (Wiseman et al., 2016)
• Decoding with beam search has biases 

• Exposure: Model not exposed to errors during training 

• Label:  scores are locally normalized 

• Possible solution: train with beam search



More beam search in training 
A Continuous Relaxation of Beam Search for End-to-end 
Training of Neural Sequence Models (Goyal et al., 2017)



A* algorithms



A* search

• Basic idea: 

• Iteratively expand paths that have the cheapest 
total cost along the path 

• total cost = cost to current point + estimated cost 
to goal



• f(n) = g(n) + h(n) 

• g(n): cost to current point 

• h(n): estimated cost to goal 

• h should be admissible and consistent



Classical A* parsing 
A* Parsing: Fast Exact Viterbi Parse Selection (Klein et 

al., 2003)
• PCFG based parser 

• Inside (g) and outside (h) scores are maintained 

• Inside: cost of building this constituent  

• Outside: cost of integrating constituent with rest of tree



Adoption with neural networks:  
CCG Parsing 

LSTM CCG Parsing (Lewis et al. 2014)

• A* for parsing 

• g(n): sum of encoded LSTM scores over current  
span 

• h(n): sum of maximum encoded scores for each 
constituent outside of current span

CCG Parsing:



Is the heuristic admissible? 
Global Neural CCG Parsing with Optimality Guarantees 

(Lee et al. 2016)
• No! 

• Fix this by adding a global model score < 0 to the elements outside of the current 
span 

• This makes the estimated cost lower than the actual cost 

• Global model: tree LSTM over completed parse 

• This is significantly slower than the embedding LSTM, so first evaluate g(n), 
then lazily expand good scores



Estimating future costs 
Learning to Decode for Future Success (Li et al., 2017)



A* search: benefits and 
drawbacks

• Benefits: 

• With heuristic, has nice optimality guarantees 

• Strong results in CCG parsing 

• Drawbacks: 

• Needs more construction than beam search, can’t 
easily throw on existing model 

• Requires a good heuristic for optimality guarantees



Other search 
algorithms



Particle Filters 
A Bayesian Model for Generative Transition-based 

Dependency Parsing (Buys et al., 2015)
• Similar to beam search 

• Think of it as beam search with a width that depends on 
certainty of it’s paths 

• More certain, smaller, less certain, wider 

• There are k total particles 

• Divide particles among paths based off of probability of 
paths, dropping any path that would get <1 particle 

• Compare after the same number of Shifts



Reranking 
Recurrent Neural Network Grammars 

(Dyer et al. 2016)
• If you have multiple different models, using one to rerank outputs can 

improve performance 

• Classically: use a target language language model to rerank the best 
outputs from an MT system 

• Going back to the generative parsing problem, directly decoding from a 
generative model is difficult 

• However, if you have both a generative model B and a discriminative 
model A 

• Decode with A then rerank with B 

• Results are superior to decoding then reranking with a separately 
trained B



Monte-Carlo Tree Search 
Human-like Natural Language Generation Using 

Monte Carlo Tree Search


