#### CS11-747 Neural Networks for NLP Adversarial Methods

Graham Neubig



**Carnegie Mellon University** 

Language Technologies Institute

Site https://phontron.com/class/nn4nlp2017/

## Generative Models

- Generate a sentence randomly from distribution P(X)
- Generate a sentence conditioned on some other information using distribution P(X|Y)

## Problems with Generation

Over-emphasis of common outputs, fuzziness
Real
MLE
Adversarial



Note: this is probably a good idea if you are doing maximum likelihood!

Image Credit: Lotter et al. 2015

## Adversarial Training

- Basic idea: create a "discriminator" that criticizes some aspect of the generated output
- Generative adversarial networks: criticize the generated output
- Adversarial feature learning: criticize the generated features to find some trait

#### Generative Adversarial Networks

## Basic Paradigm

- Two players: generator and discriminator
  - **Discriminator:** given an image, try to tell whether it is real or not
  - **Generator:** try to generate an image that fools the discriminator into answering "real"

## Training Method



# In Equations

• Discriminator loss function:

 $\ell_D(\theta_D, \theta_G) = -\frac{1}{2} \mathbb{E}_{\boldsymbol{x} \sim P_{data}} \log D(\boldsymbol{x}) - \frac{1}{2} \mathbb{E}_{\boldsymbol{z}} \log(1 - D(G(\boldsymbol{z})))$ High prob for real data High prob for fake data

- Generator loss function:
  - Zero sum loss:

$$\ell_G(\theta_D, \theta_G) = -\ell_D(\theta_D, \theta_G)$$

• Heuristic non-saturating game loss:

$$\ell_G(\theta_D, \theta_G) = -\frac{1}{2} \mathbb{E}_{\boldsymbol{z}} \log D(G(\boldsymbol{z}))$$

• Latter gives better gradients when discriminator accurate

#### Problems w/ Training: Mode Collapse

- GANs are great, but training is notoriously difficult
- e.g. mode collapse: generator learns to map all *z* to a single *x* in the training data
- One solution: use other examples in the minibatch as side information, making it easier to push similar examples apart (Salimans et al. 2016)

### Problems w/ Training: Over-confident Discriminator

- At the beginning of training it is easy to learn the discriminator, causing it to be over-confident
- One way to fix this: label smoothing to reduce the confidence of the target
- Salimans et al. (2016) suggest one-sided label smoothing, which only smooths predictions over

# Applying GANs to Text

Applications of GAN Objectives to Language

- GANs for Language Generation (Yu et al. 2017)
- GANs for MT (Yang et al. 2017, Wu et al. 2017, Gu et al. 2017)
- GANs for Dialogue Generation (Li et al. 2016)

#### Problem! Can't Backprop through Sampling



#### Solution: Use Learning Methods for Latent Variables

- Policy gradient reinforcement learning methods (e.g. Yu et al. 2016)
- Reparameterization trick for latent variables using Gumbel softmax (Gu et al. 2017)

# Discriminators for Sequences

- Decide whether a particular generated output is true or not
- Commonly use CNNs as discriminators, either on sentences (e.g. Yu et al. 2017), or pairs of sentences (e.g. Wu et al. 2017)



#### GANs for Text are Hard! (Yang et al. 2017)





#### GANs for Text are Hard! (Wu et al. 2017)

Learning Rate for Generator



#### Stabilization Trick: Assigning Reward to Specific Actions

- Getting a reward at the end of the sentence gives a credit assignment problem
- Solution: assign reward for partial sequences (Yu et al. 2016, Li et al. 2017)

D(this) D(this is) D(this is a) D(this is a fake) D(this is a fake sentence)

# Stabilization Tricks:

#### Performing Multiple Rollouts

- Like other methods using discrete samples, instability is a problem
- This can be helped somewhat by doing multiple rollouts (Yu et al. 2016)



#### Interesting Application: GAN for Data Cleaning (Yang et al. 2017)

- The discriminator tries to find "fake data"
- What about the real data it marks as fake? This might be noisy data!
- Selecting data in order of discriminator score does better than selecting data randomly.

#### Adversarial Feature Learning

# Adversaries over Features vs. Over Outputs

Generative adversarial networks



• Adversarial feature learning



- Why adversaries over features?
  - Non-generative tasks
  - Continuous features easier than discrete outputs

### Learning Domain-invariant Representations (Ganin et al. 2016)

• Learn features that cannot be distinguished by domain



 Interesting application to synthetically generated or stale data (Kim et al. 2017)

#### Learning Languageinvariant Representations

• Chen et al. (2016) learn language-invariant representations for text classification



Adversarial Language Identification Scorer

Also on multi-lingual machine translation (Xie et al. 2017)

### Adversarial Multi-task Learning (Liu et al. 2017)

 Basic idea: want some features in a shared space across tasks, others separate



 Method: adversarial discriminator on shared features, orthogonality constraints on separate features

#### Implicit Discourse Connection Classification w/ Adversarial Objective (Qin et al. 2017)

- Idea: implicit discourse relations are not explicitly marked, but would like to detect them if they are
- Text with explicit discourse connectives should be the same as text without!



#### Professor Forcing (Lamb et al. 2016)

- Halfway in between a discriminator on discrete outputs and feature learning
  - Generate output sequence according to model
  - But train discriminator on hidden states

(sampled or true output sequence) x → h → y Adversary!

### Unsupervised Style Transfer for Text (Shen et al. 2017)

- Two potential styles (e.g. positive and negative sentences)
- Use professor forcing to discriminate between true style 1, fake style 2->1, and another for vice-versa

| Sentiment transfer from negative to positive |
|----------------------------------------------|
| I would recommend find another place.        |
| I would recommend this place again!          |
| Do not like it at all!                       |
| All in all, it's great!                      |
| I regret not having the time to shop around. |
| I have a great experience here.              |
| Average Mexican food.                        |
| Authentic Italian food.                      |

Questions?