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Discriminative vs. 
Generative Models

• Discriminative model: calculate the probability of output given 
input P(Y|X) 

• Generative model: calculate the probability of a variable P(X), 
or multiple variables P(X,Y) 

• Which of the following models are discriminative vs. generative? 

• Standard BiLSTM POS tagger 

• Globally normalized CRF POS tagger 

• Language model



Types of Variables
• Observed vs. Latent: 

• Observed: something that we can see from our data, e.g. X or Y 

• Latent: a variable that we assume exists, but we aren’t given the 
value 

• Deterministic vs. Random: 

• Deterministic: variables that are calculated directly according 
to some deterministic function 

• Random (stochastic): variables that obey a probability 
distribution, and may take any of several (or infinite) values



Quiz: What Types of 
Variables?

• In the an attentional sequence-to-sequence model 
using MLE/teacher forcing, are the following variables 
observed or latent? deterministic or random? 

• The input word ids f 

• The encoder hidden states h 

• The attention values a 

• The output word ids e



Variational Auto-encoders 
(Kingma and Welling 2014)



Why Latent Random 
Variables?

• We believe that there are underlying latent factors that 
affect the text/images/speech that we are observing 

• What is the content of the sentence? 

• Who is the writer/speaker? 

• What is their sentiment? 

• What words are aligned to others in a translation? 

• All of these have a correct answer, we just don’t know what 
it is. Deterministic variables cannot capture this ambiguity.



A Latent Variable Model
• We observed output x (assume a continuous vector for now) 

• We have a latent variable z generated from a Gaussian 

• We have a function f, parameterized by Θ that maps from z 
to x, where this function is usually a neural net

N

z~N(0, I)

x

Θ

x = f(z; Θ)



An Example (Goersch 2016)

z x



What is Our Loss Function?
• We would like to maximize the corpus log likelihood

logP (X ) =

X

x2X
logP (x; ✓)

• For a single example, the marginal likelihood is

• We can approximate this by sampling zs then summing

P (x; ✓) =

Z
P (x | z; ✓)P (z)dz

P (x; ✓) ⇡
X

z2S(x)

P (x|z; ✓) where S(x) := {z0; z0 ⇠ P (z)}



Problem: Straightforward 
Sampling is Inefficient

z x

Current 
data pointLatent samples w/ 

non-negligible P(x|z)



Solution: “Inference Model”
• Predict which latent point produced the data point using inference 

model Q(z|x) 

• Acquire samples from inference model’s conditional for more 
efficient training

• Called variational auto-encoder because it “encodes” with the 
inference model, “decodes” with generative model

Q(z|x) 



Disconnect Between 
Samples and Objective

• We want to optimize the expectation

• But if we sample according to Q, we are actually 
approximating

• How do we resolve this disconnect?

P (x; ✓) =

Z
P (x | z; ✓)P (z)dz

= Ez⇠P (z)[P (x | z; ✓)]

E
z⇠Q(z|x;�)[P (x | z; ✓)]



VAE Objective
• We can create an optimizable objective matching 

our problem, starting with KL divergence

KL[Q(z | x)||P (z | x)] = E
z⇠Q(z|x)[logQ(z | x)� logP (z | x)]

Bayes’s Rule
KL[Q(z | x)||P (z | x)] = E

z⇠Q(z|x)[logQ(z | x)� logP (x | z)� logP (z)] + logP (x)

logP (x)�KL[Q(z | x)||P (z | x)] = E
z⇠Q(z|x)[logP (x | z)]� E

z⇠Q(z|x)[logQ(z | x)� logP (z)]

Rearrange/negate

logP (x)�KL[Q(z | x)||P (z | x)] = E
z⇠Q(z|x)[logP (x | z)]�KL[Q(z | x)||P (z)]

Definition of KL divergence



Interpreting the VAE 
Objective

• Left side is what we want to optimize 
• Marginal likelihood of x 
• Accuracy of inference model 

• Right side is what we can optimize
• Expectation according to Q of likelihood P(x|z) 

(approximated by sampling from Q) 
• Penalty for when Q diverges from prior P(z), calculable 

in closed-form for Gaussians

logP (x)�KL[Q(z | x)||P (z | x)] = E
z⇠Q(z|x)[logP (x | z)]�KL[Q(z | x)||P (z)]



Problem! 
Sampling Breaks Backprop

Figure Credit: Doersch (2016)



Solution:  
Re-parameterization Trick

Figure Credit: Doersch (2016)



An Example: Generating Sentences 
w/ Variational Autoencoders



Generating from Language 
Models

• Remember: using ancestral sampling, we can 
generate from a normal language model

• We can also generate conditioned on something 
P(y|x) (e.g. translation, image captioning)

while xj-1 != “</s>”: 
  xj ~ P(xj | x1, …, xj-1)

while yj-1 != “</s>”: 
  yj ~ P(yj | X, y1, …, yj-1)



Generating Sentences from a 
Continuous Space (Bowman et al. 2015)
• The VAE-based approach is conditional language 

model that conditions on a latent variable z 
• Like an encoder-decoder, but latent representation 

is latent variable, input and output are identical

Q RNN

Sentence x

P RNN

Sentence xLatent z



Motivation for Latent 
Variables

• Allows for a consistent latent space of sentences? 

• e.g. interpolation between two sentences 

•  
 
 
 
 

• More robust to noise? VAE can be viewed as 
standard model + regularization.

Standard encoder-decoder VAE



Let’s Try it Out! 
vae-lm.py



Difficulties in Training
• Of the two components in the VAE objective, the KL 

divergence term is much easier to learn!

• Results in the model learning to rely solely on 
decoder and ignore latent variable

logP (x)�KL[Q(z | x)||P (z | x)] = E
z⇠Q(z|x)[logP (x | z)]�KL[Q(z | x)||P (z)]

Requires good 
generative model

Just need to 
set the mean/variance 
of Q to be same as P



Solution 1:  
KL Divergence Annealing

• Basic idea: Multiply KL term by a constant λ starting at 
zero, then gradually increase to 1 

• Result: model can learn to use z before getting penalized

Figure Credit: Bowman et al. (2017)



Solution 2:  
Weaken the Decoder

• But theoretically still problematic: it can be shown that 
the optimal strategy is to ignore z when it is not 
necessary (Chen et al. 2017) 

• Solution: weaken decoder P(x|z) so using z is essential 

• Use word dropout to occasionally skip inputting 
previous word in x (Bowman et al. 2015) 

• Use a convolutional decoder w/ limited context 
(Yang et al. 2017) 



Handling Discrete Latent 
Variables



Discrete Latent Variables?

• Many variables are better treated as discrete 

• Part-of-speech of a word 

• Class of a question 

• Speaker traits (gender, etc.) 

• How do we handle these?



Method 1: Enumeration
• For discrete variables, our integral is a sum

P (x; ✓) =
X

z

P (x | z; ✓)P (z)

• If the number of possible configurations for z is 
small, we can just sum over all of them



Method 2: Sampling
• Randomly sample a subset of configurations of z 

and optimize with respect to this subset 

• Various flavors: 

• Marginal likelihood/minimum risk (previous class) 

• Reinforcement learning (next class) 

• Problem: cannot backpropagate through 
sampling, resulting in very high variance



Method 3: Reparameterization 
(Maddison et al. 2017, Jang et al. 2017)

• Reparameterization also possible for discrete variables!
Original Categorical Sampling Method:

ẑ = cat-sample(P (z | x))
Reparameterized Method

Gumbel(0, 1) = � log(� log(Uniform(0,1)))

where the Gumbel distribution is

• Backprop is still not possible, due to argmax

ˆ

z = argmax(logP (z | x) + Gumbel(0,1))



Gumbel-Softmax
• A way to soften the decision and allow for continuous 

gradients 

• Instead of argmax, take softmax with temperature τ  
 

• As τ approaches 0, will approach max

ˆ

z = softmax((logP (z | x) + Gumbel(0,1))

1/⌧
)



Application Examples 
in NLP



Variational Models of Language 
Processing (Miao et al. 2016)

• Present models with random variables for document 
modeling and question-answer pair selection

• Why random variables? Documents: more consistent 
space, question-answer more regularization?



Controllable Text Generation 
(Hu et al. 2017)

• Creates a latent code z for content, and another 
latent code c for various aspects that we would like 
to control (e.g. sentiment)

• Both z and c are continuous variables



Controllable Sequence-to-sequence 
(Zhou and Neubig 2017)

• Latent continuous and discrete variables can be trained 
using auto-encoding or encoder-decoder objective



Symbol Sequence Latent 
Variables (Miao and Blunsom 2016)

• Encoder-decoder with a sequence of latent symbols

• Summarization in Miao and Blunsom (2016) 

• Attempts to “discover” language (e.g. Havrylov and Titov 2017) 

• But things may not be so simple! (Kottur et al. 2017)



Recurrent Latent Variable 
Models (Chung et al. 2015)

• Add a latent variable at each step of a recurrent 
model



Questions?


