
CS11-747 Neural Networks for NLP

Structured Prediction
with Local Dependencies

Xuezhe Ma (Max)

Site

https://phontron.com/class/nn4nlp2017/

https://phontron.com/class/nn4nlp2017/

An Example Structured Prediction Problem:

Sequence Labeling

Sequence Labeling

• One tag for one word

• e.g. Part of speech tagging

I hate this movie

PRP VBP DT NN

• e.g. Named entity recognition

The movie featured Keanu

O O O B-PER

Reeves

I-PER

Sequence Labeling as Independent
Classification

I hate this movie<s> <s>

classifier

PRP VBP DT NN

classifier classifier classifier

Locally Normalized Models

I hate this movie<s> <s>

classifier

PRP VBP DT NN

classifier classifier classifier

Summary

• Independent classification models
• Strong independent assumption

𝑃 𝑌 𝑋 =

𝑖=1

𝐿

𝑃(𝑦𝑖|𝑋)

• No guarantee of valid (consistent) structured outputs
• BIO tagging scheme in NER

• Locally normalized models (e.g. history-based RNN, seq2seq)
• Prior order

𝑃 𝑌 𝑋 =

𝑖=1

𝐿

𝑃(𝑦𝑖|𝑋, 𝑦<𝑖)

• Approximating decoding
• Greedy search
• Beam search

• Label bias

Globally normalized models?
• Not too strong independent assumption (local dependencies)

• Optimal decoding

Globally normalized models?
• Not too strong independent assumption (local dependencies)

• Optimal decoding

Conditional Random Fields
(CRFs)

Globally Normalized Models

• Each output sequence has a score, which is not normalized over a
particular decision

𝑃 𝑌 𝑋 =
exp(𝑆 𝑌, 𝑋)

 𝑌′ exp(𝑆 𝑌
′, 𝑋)
=
𝜓(𝑌, 𝑋)

 𝑌′𝜓(𝑌
′, 𝑋)

where 𝜓(𝑌, 𝑋) are potential functions.

Conditional Random Fields

y1 y2 y3 yn

x

yn-

1

𝑃 𝑌 𝑋 =
 𝑖=1
𝐿 𝜓𝑖(𝑦𝑖−1, 𝑦𝑖 , 𝑋)

 𝑌′ 𝑖=1
𝐿 𝜓𝑖(𝑦′𝑖−1, 𝑦′𝑖 , 𝑋)

General form of globally normalized model First-order linear CRF

y1 y2 y3 yn

x

𝑃 𝑌 𝑋 =
𝜓(𝑌, 𝑋)

 𝑌′𝜓(𝑌
′, 𝑋)

Potential Functions

• 𝜓𝑖 𝑦𝑖−1, 𝑦𝑖 , 𝑋 = exp 𝑊
𝑇𝑇 𝑦𝑖−1, 𝑦𝑖 , 𝑋, 𝑖 +𝑈

𝑇 𝑆 𝑦𝑖 , 𝑋, 𝑖 + 𝑏𝑦𝑖−1,𝑦𝑖

• Using neural features in DNN:
𝜓𝑖 𝑦𝑖−1, 𝑦𝑖 , 𝑋 = exp 𝑊𝑦𝑖−1,𝑦𝑖

𝑇 𝐹 𝑋, 𝑖 +𝑈𝑦𝑖
𝑇 𝐹 𝑋, 𝑖 + 𝑏𝑦𝑖−1,𝑦𝑖

• Number of parameters: 𝑂(𝑌 2𝑑𝐹)

• Simpler version:
𝜓𝑖 𝑦𝑖−1, 𝑦𝑖 , 𝑋 = exp 𝑊𝑦𝑖−1,𝑦𝑖 + 𝑈𝑦𝑖

𝑇 𝐹 𝑋, 𝑖 + 𝑏𝑦𝑖−1,𝑦𝑖
• Number of parameters: 𝑂(𝑌 2 + |𝑌|𝑑𝐹)

BiLSTM-CRF for Sequence Labeling

I hate this movie<s> <s>

PRP VBP DT NN

Training &Decoding of CRF
Viterbi Algorithm

CRF Training & Decoding

• 𝑃 𝑌 𝑋 =
 𝑖=1
𝐿 𝜓𝑖(𝑦𝑖−1,𝑦𝑖,𝑋)

 𝑌′ 𝑖=1
𝐿 𝜓𝑖(𝑦′𝑖−1,𝑦′𝑖,𝑋)

=
 𝑖=1
𝐿 𝜓𝑖(𝑦𝑖−1,𝑦𝑖,𝑋)

𝑍(𝑋)

• Training: computing the partition function Z(X)

𝑍 𝑋 =

𝑌

𝑖=1

𝐿

𝜓𝑖(𝑦𝑖−1, 𝑦𝑖 , 𝑋)

• Decoding
𝑦∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑌𝑃(𝑌|𝑋)

Go through the output space of Y which grows exponentially with the
length of the input sequence.

Interactions

• Each label depends on the input, and the nearby labels

• But given adjacent labels, others do not matter

• If we knew the score of every sequence 𝑦1, … , 𝑦𝑛−1, we could
compute easily the score of sequence 𝑦1, … , 𝑦𝑛−1, 𝑦𝑛

• So we really only need to know the score of all the sequences ending
in each 𝑦𝑛−1

• Think of that as some “precalculation” that happens before we think
about 𝑦𝑛

𝑍 𝑋 =

𝑌

𝑖=1

𝐿

𝜓𝑖(𝑦𝑖−1, 𝑦𝑖 , 𝑋)

Viterbi Algorithm

• 𝜋𝑡(𝑦|X) is the partition of sequence with length equal to 𝑡 and end with label 𝑦:

𝜋𝑡 𝑦 𝑋 =

𝑦𝑖,…,𝑦𝑡−1

𝑖=1

𝑡−1

𝜓𝑖 𝑦𝑖−1, 𝑦𝑖 , 𝑋 𝜓𝑡(𝑦𝑡−1, 𝑦𝑡 = 𝑦, 𝑋)

=

𝑦𝑡−1

𝜓𝑡(𝑦𝑡−1, 𝑦𝑡 = 𝑦, 𝑋)

𝑦𝑖,…,𝑦𝑡−2

𝑖=1

𝑡−2

𝜓𝑖 𝑦𝑖−1, 𝑦𝑖 , 𝑋 𝜓𝑡−1(𝑦𝑡−2, 𝑦𝑡−1, 𝑋)

=

𝑦𝑡−1

𝜓𝑡(𝑦𝑡−1, 𝑦𝑡 = 𝑦, 𝑋)𝜋𝑡−1 𝑦𝑡−1 𝑋

• Computing partition function 𝑍 𝑋 = 𝑦 𝜋𝐿(𝑦|𝑋)

Step: Initial Part

 First, calculate transition from <S> and emission of the

first word for every POS

1:NN

1:JJ

1:VB

1:LRB

1:RRB

…

0:<S>

natural

score[“1 NN”] = T(NN|<S>) + S(natural | NN)

score[“1 JJ”] = T(JJ|<S>) + S(natural | JJ)

score[“1 VB”] = T(VB|<S>) + S(natural | VB)

score[“1 LRB”] = T(LRB|<S>) + S(natural | LRB)

score[“1 RRB”] = T(RRB|<S>) + S(natural | RRB)

Step: Middle Parts

 For middle words, calculate the scores for all possible previous POS tags

1:NN

1:JJ

1:VB

1:LRB

1:RRB

…

natural
score[“2 NN”] = log_sum_exp(

score[“1 NN”] + T(NN|NN) + S(language | NN),

score[“1 JJ”] + T(NN|JJ) + S(language | NN),

score[“1 VB”] + T(NN|VB) + S(language | NN),

score[“1 LRB”] + T(NN|LRB) + S(language | NN),

score[“1 RRB”] + T(NN|RRB) + S(language | NN),

...)

2:NN

2:JJ

2:VB

2:LRB

2:RRB

…

language

score[“2 JJ”] = log_sum_exp(

score[“1 NN”] + T(JJ|NN) + S(language | JJ),

score[“1 JJ”] + T(JJ|JJ) + S(language | JJ),

score[“1 VB”] + T(JJ|VB) + S(language | JJ),

...
𝑙𝑜𝑔 𝑠𝑢𝑚 𝑒𝑥𝑝(𝑥, 𝑦) = log(exp 𝑥 + exp 𝑦)

Forward Step: Final Part

 Finish up the sentence with the sentence final symbol

I:NN

I:JJ

I:VB

I:LRB

I:RRB

…

science
score[“I+1 </S>”] = log_sum_exp(

score[“I NN”] + T(</S>|NN),

score[“I JJ”] + T(</S>|JJ),

score[“I VB”] + T(</S>|VB),

score[“I LRB”] + T(</S>|LRB),

score[“I NN”] + T(</S>|RRB),

...

)

I+1:</S>

Viterbi Algorithm

• Decoding is performed with similar dynamic programming algorithm

• Calculating gradient: 𝑙𝑀𝐿 𝑋, 𝑌; 𝜃 = − log𝑃(𝑌|𝑋; 𝜃)
𝜕𝑙𝑀𝐿(𝑋, 𝑌; 𝜃)

𝜕𝜃
= 𝐹 𝑌, 𝑋 − 𝐸𝑃 𝑌 𝑋; 𝜃 𝐹(𝑌, 𝑋)

• Forward-backward algorithm (Sutton and McCallum, 2010)
• Both 𝑃 𝑌 𝑋; 𝜃 and 𝐹(𝑌, 𝑋) can be decomposed

• Need to compute the marginal distribution:

𝑃 𝑦𝑖−1 = 𝑦
′, 𝑦𝑖 = 𝑦 𝑋; 𝜃 =

𝛼𝑖−1 𝑦
′ 𝑋 𝜓𝑖 𝑦

′, 𝑦, 𝑋 𝛽𝑖(𝑦|𝑋)

𝑍(𝑋)

• Not necessary if using DNN framework (auto-grad)

Case Study
BiLSTM-CNN-CRF for Sequence Labeling

Case Study: BiLSTM-CNN-CRF for Sequence
Labeling (Ma et al, 2016)
• Goal: Build a truly end-to-end neural model for sequence labeling

task, requiring no feature engineering and data pre-processing.

• Two levels of representations
• Character-level representation: CNN

• Word-level representation: Bi-directional LSTM

CNN for Character-level representation

• We used CNN to extract morphological information such as prefix or
suffix of a word

Bi-LSTM-CNN-CRF

• We used Bi-LSTM to
model word-level
information.

• CRF is on top of Bi-LSTM
to consider the co-relation
between labels.

Training Details

• Optimization Algorithm:
• SGD with momentum (0.9)

• Learning rate decays with rate 0.05 after each epoch.

• Dropout Training:
• Applying dropout to regularize the model with fixed dropout rate 0.5

• Parameter Initialization:
• Parameters: Glorot and Bengio (2010)

• Word Embedding: Stanford’s GloVe 100-dimentional embeddings

• Character Embedding: uniformly sampled from [−
3

𝑑𝑖𝑚
, +

3

𝑑𝑖𝑚
], where 𝑑𝑖𝑚 = 30

Experiments

Model

POS NER

Dev Test Dev Test

Acc. Acc. Prec. Recall F1 Prec. Recall F1

BRNN 96.56 96.76 92.04 89.13 90.56 87.05 83.88 85.44

BLSTM 96.88 96.93 92.31 90.85 91.57 87.77 86.23 87.00

BLSTM-CNN 97.34 97.33 92.52 93.64 93.07 88.53 90.21 89.36

BLSTM-CNN-CRF 97.46 97.55 94.85 94.63 94.74 91.35 91.06 91.21

Considering Rewards during Training

Reward Functions in Structured Prediction

• POS tagging: token-level accuracy

• NER: F1 score

• Dependency parsing: labeled attachment score

• Machine translation: corpus-level BLEU

Do different reward functions impact our decisions?

• Data1: 𝑋, 𝑌 ∼ 𝑃

• Task1: predict 𝑌 given 𝑋 i.e. ℎ1(𝑋)

• Reward1: 𝑅1(ℎ1 𝑋 , 𝑌)

• Data2: 𝑋, 𝑌 ∼ 𝑃

• Task2: predict 𝑌 given 𝑋 i.e. ℎ2(𝑋)

• Reward2: 𝑅2(ℎ2 𝑋 , 𝑌)

ℎ1 𝑋 = ℎ2 𝑋 ?

$0?
$1M?

$0
$1M

Predictor

Reward is the amount of money we get

$0
$1M

$0
$1M

Predictor

$0
$1M

$0
$1B

Predictor

Reward is the amount of money we get

$0
$1M

$0
$1B

Predictor

Considering Rewards during Training

• Max-Margin (Taskar et al., 2004)
• Similar to cost-augmented hinge loss (last class)

• Do not rely on a probabilistic model (only decoding algorithm is required)

• Minimum Risk Training (Shen et al., 2016)

• Reward-augmented Maximum Likelihood (Norouzi et al., 2016)

Minimum Risk Training

𝑙𝑀𝑅𝑇 𝑥, 𝑦; 𝜃 = 𝐸𝑃(𝑌|𝑋=𝑥; 𝜃)[−𝑅 𝑌, 𝑦]

• Pros:
• Direct optimization w.r.t. evaluation metrics
• Similar to the globally normalized model in (Andor et al, 2016), but with task-

specific reward R
• Applicable to arbitrary risk functions: R is not necessarily differentiable

• Cons:
• Intractable computation of expectation w.r.t. 𝑃(𝑌|𝑋; 𝜃)
• Sampling from a sub-space

Reward-augmented Maximum Likelihood
• Reward-augmented Maximum Likelihood (RAML)

• Basic idea: randomly sample incorrect training data from the exponentiated payoff distribution q,
train w/ maximum likelihood

𝑞 𝑦 𝑦∗; 𝜏 =
exp(𝑅(𝑦, 𝑦∗/𝜏)

 𝑦′ exp(𝑅(𝑦
′, 𝑦∗/𝜏)

Can be shown to approximately maximize reward, Norouzi et al., (2016) and Ma et al. (2017)

I hate this movie

PRP NN DT NN

PRP VBP DT NN

MLE

sample

Questions?

