CS11-747 Neural Networks for NLP
Using/Evaluating Sentence Representations

Graham Neubig

Carnegie Mellon University
Language Technologies Institute

Site
https://phontron.com/class.nn4nlp2017/
Sentence Representations

• We can create a vector or sequence of vectors from a sentence

 this is an example →

 this is an example →

Obligatory Quote!

“You can’t cram the meaning of a whole %&!$ing sentence into a single $&!*ing vector!”
— Ray Mooney
How do We Use/Evaluate Sentence Representations?

- Sentence Classification
- Paraphrase Identification
- Semantic Similarity
- Entailment
- Retrieval
Goal for Today

• Introduce **tasks/evaluation metrics**

• Introduce **common data sets**

• Introduce **methods**, and particularly state of the art results
Sentence Classification
Sentence Classification

• Classify sentences according to various traits
• Topic, sentiment, subjectivity/objectivity, etc.

I hate this movie

I love this movie
I hate this movie.

lookup lookup lookup lookup

some complicated function to extract combination features (usually a CNN)

scores

probs
Data Example: Stanford Sentiment Treebank (Socher et al. 2013)

- In addition to standard tags, each constituent tagged with a sentiment value
Paraphrase Identification
Paraphrase Identification
(Dolan and Brockett 2005)

• Identify whether A and B mean the same thing

Charles O. Prince, 53, was named as Mr. Weill’s successor.

Mr. Weill’s longtime confidant, Charles O. Prince, 53, was named as his successor.

• Note: exactly the same thing is too restrictive, so use a loose sense of similarity
Data Example:
Microsoft Research Paraphrase Corpus
(Dolan and Brockett 2005)

• **Construction procedure**

 • Crawl large news corpus

 • Identify sentences that are similar automatically using heuristics or classifier

 • Have raters determine whether they are in fact similar (67% were)

• Corpus is **high quality but small**, 5,800 sentences

• c.f. Other corpora based on translation, image captioning
Models for Paraphrase Detection (1)

- Calculate vector representation
- Feed vector representation into classifier

this is an example → classifier → yes/no
this is another example → classifier → yes/no
Model Example: Skip-thought Vectors
(Kiros et al. 2015)

• General method for sentence representation

• Unsupervised training: predict surrounding sentences on large-scale data (using encoder-decoder)

• Use resulting representation as sentence representation

• Train logistic regression on $[\|u-v\|; u^*v]$ (component-wise)
Models for Paraphrase Detection (2)

• Calculate multiple-vector representation, and combine to make a decision

this is an example →

this is an example →

classifier → yes/no
Model Example: Convolutional Features + Matrix-based Pooling (Yin and Schutze 2015)
Model Example: Paraphrase Detection w/ Discriminative Embeddings
(Ji and Eisenstein 2013)

- Perform matrix factorization of word/context vectors
 - Weight word/context vectors based on discriminativeness
 - Also add features regarding surface match
- Current state-of-the-art on MSRPC
Semantic Similarity
Semantic Similarity/Relatedness
(Marelli et al. 2014)

• Do two sentences mean something similar?

<table>
<thead>
<tr>
<th>Relatedness score</th>
<th>Example</th>
</tr>
</thead>
</table>
| 1.6 | A: “A man is jumping into an empty pool”
 B: “There is no biker jumping in the air” |
| 2.9 | A: “Two children are lying in the snow and are making snow angels”
 B: “Two angels are making snow on the lying children” |
| 3.6 | A: “The young boys are playing outdoors and the man is smiling nearby”
 B: “There is no boy playing outdoors and there is no man smiling” |
| 4.9 | A: “A person in a black jacket is doing tricks on a motorbike”
 B: “A man in a black jacket is doing tricks on a motorbike” |

• Like paraphrase identification, but with shades of gray.
Data Example: SICK Dataset
(Marelli et al. 2014)

• Procedure to create sentences
 • Start with short flickr/video description sentences
 • Normalize sentences (11 transformations such as active↔passive, replacing w/ synonyms, etc.)
 • Create opposites (insert negation, invert determiners, replace words w/ antonyms)
 • Scramble words
• Finally ask humans to measure semantic relatedness on 1-5 Likert scale of “completely unrelated - very related”
Evaluation Procedure

• Input two sentences into model, calculate score

• Measure correlation of the machine score with human score (e.g. Pearson’s correlation)
Model Example:
Siamese LSTM Architecture
(Mueller and Thyagarajan 2016)

• Use **siamese LSTM architecture** with e^{-L1} as a similarity metric

this is an example \rightarrow similarity \rightarrow $[0, 1]$

this is another example \rightarrow

\[e^{-||h_1 - h_2||_1} \]

• **Simple model!** Good results due to engineering? Including pre-training, using pre-trained word embeddings, etc.

• Results in best reported accuracies for SICK task
Textual Entailment
Textual Entailment
(Dagan et al. 2006, Marelli et al. 2014)

- **Entailment:** if A is true, then B is true (c.f. paraphrase, where opposite is also true)
 - The woman bought a sandwich for lunch
 → The woman bought lunch

- **Contradiction:** if A is true, then B is not true
 - The woman bought a sandwich for lunch
 → The woman did not buy a sandwich

- **Neutral:** cannot say either of the above
 - The woman bought a sandwich for lunch
 → The woman bought a sandwich for dinner
Data Example:
Stanford Natural Language Inference Dataset
(Bowman et al. 2015)

• Data created from **Flickr captions**

• **Crowdsourse** creation of one entailed, neutral, and contradicted caption for each caption

• **Verify** the captions with 5 judgements, 89% agreement between annotator and “gold” label

• Also, **expansion to multiple genres: MultiNLI**
Model Example: Multi-perspective Matching for NLI (Wang et al. 2017)

- Encode, aggregate information in both directions, encode one more time, predict

- Strong results on SNLI

- Lots of other examples on SNLI web site: https://nlp.stanford.edu/projects/snli/
Interesting Result: Entailment \rightarrow Generalize
(Conneau et al. 2017)

- Skip-thought vectors are **unsupervised training**

- Simply: can **supervised training** for a task such as inference learn generalizable embeddings?

 - Task is more difficult and requires capturing nuance \rightarrow yes?

 - Data is much smaller \rightarrow no?

- Answer: **yes**, generally better
Retrieval
Retrieval Idea

• Given an input sentence, find something that matches
 • Text \rightarrow text (Huang et al. 2013)
 • Text \rightarrow image (Socher et al. 2014)
 • Anything to anything really!
Basic Idea

- First, encode entire target database into vectors.
- Encode source query into vector.
- Find vector with minimal distance.

DB

he ate some things
my database entry
this is another example

Source

this is an example
A First Attempt at Training

• Try to get the score of the correct answer higher than the other answers

he ate some things \rightarrow 0.6

my database entry \rightarrow -1.0 \text{ bad}

this is another example \rightarrow 0.4
Margin-based Training

• Just “better” is not good enough, want to exceed by a margin (e.g. 1)

he ate some things → 0.6
my database entry → -1.0 bad
this is another example → 0.8
Negative Sampling

- The database is too big, so only use a small portion of the database as negative samples.

 this is an example ➔

 he ate some things ➔ 0.6

 my database entry ➔

 this is another example ➔ 0.8
Loss Function In Equations

\[L(x^*, y^*, S) = \sum_{x \in S} \max(0, 1 + s(x, y^*) - s(x^*, y^*)) \]
Evaluating Retrieval Accuracy

- **recall@X**: “is the correct answer in the top X choices?”

- **mean average precision**: area under the precision recall curve for all queries
Let’s Try it Out (on text-to-text)
lstm-retrieval.py
Efficient Training

• Efficiency improved when using mini-batch training

• Sample a mini-batch, calculate representations for all inputs and outputs

• Use other elements of the minibatch as negative samples
Bidirectional Loss

- Calculate the hinge loss in both directions
- Gives a bit of extra training signal
- Free computationally (when combined with mini-batch training)
Efficient Retrieval

• Again, the database may be too big to retrieve, use approximate nearest neighbor search

• Example: locality sensitive hashing
Data Example:
Flickr8k Image Retrieval
(Hodosh et al. 2013)

• Input text, output image
• 8000 images x 5 captions each
• Gathered by asking Amazon mechanical turkers to generate captions
Questions?