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• NLP is full of sequential data

• Words in sentences

• Characters in words

• Sentences in discourse

• …
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Long-distance 
Dependencies in Language

• Agreement in number, gender, etc.

• Selectional preference

He does not have very much confidence in himself. 
She does not have very much confidence in herself.

The reign has lasted as long as the life of the queen. 
The rain has lasted as long as the life of the clouds.
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Can be Complicated!
• What is the referent of “it”?

The trophy would not fit in the brown suitcase because it was too big.

The trophy would not fit in the brown suitcase because it was too small.

(from Winograd Schema Challenge: 
http://commonsensereasoning.org/winograd.html)

Trophy

Suitcase

http://commonsensereasoning.org/winograd.html
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Training RNNs
I hate this movie

RNN RNN RNN RNN

predict

prediction 1

predict predict predict

prediction 2 prediction 3 prediction 4

label 1 label 2 label 3 label 4

loss 1 loss 2 loss 3 loss 4

sum total loss
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RNN Training
• The unrolled graph is a well-formed (DAG) 

computation graph—we can run backprop  
 
 
 

• Parameters are tied across time, derivatives are 
aggregated across all time steps 

• This is historically called “backpropagation through 
time” (BPTT)

sum

total loss
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Parameter Tying
I hate this movie

RNN RNN RNN RNN

predict

prediction 1

predict predict predict

loss 1 loss 2 loss 3 loss 4

prediction 2 prediction 3 prediction 4

label 1 label 2 label 3 label 4

sum total loss

Parameters are shared! Derivatives are accumulated.
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What Can RNNs Do?

• Represent a sentence

• Read whole sentence, make a prediction

• Represent a context within a sentence

• Read context up until that point



Representing Sentences
I hate this movie

RNN RNN RNN RNN



Representing Sentences
I hate this movie

RNN RNN RNN RNN

predict

prediction



Representing Sentences
I hate this movie

RNN RNN RNN RNN

predict

prediction

• Sentence classification



Representing Sentences
I hate this movie

RNN RNN RNN RNN

predict

prediction

• Sentence classification

• Conditioned generation



Representing Sentences
I hate this movie

RNN RNN RNN RNN

predict

prediction

• Sentence classification

• Conditioned generation

• Retrieval
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Representing Contexts
I hate this movie

RNN RNN RNN RNN

predict

label

predict

label

predict

label

predict

label

• Tagging

• Language Modeling

• Calculating Representations for Parsing, etc.
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• Language modeling is like a tagging task, where 
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Bi-RNNs
• A simple extension, run the RNN in both directions

I hate this movie

RNN RNN RNN RNN

RNN RNN RNN RNN

concat concat concat concat

softmax

PRN

softmax

VB

softmax

DET

softmax

NN



Let’s Try it Out!
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Recurrent Neural Networks 
in DyNet

• Based on “*Builder” class (*=SimpleRNN/LSTM)

# LSTM (layers=1, input=64, hidden=128, model) 
RNN = dy.SimpleRNNBuilder(1, 64, 128, model)

• Add parameters to model (once):

• Add parameters to CG and get initial state (per sentence):
s = RNN.initial_state()

• Update state and access (per input word/character):
s = s.add_input(x_t) 
h_t = s.output()



RNNLM Example: 
Parameter Initialization

# Lookup parameters for word embeddings 
WORDS_LOOKUP = model.add_lookup_parameters((nwords, 64)) 

# Word-level RNN (layers=1, input=64, hidden=128, model) 
RNN = dy.SimpleRNNBuilder(1, 64, 128, model) 

# Softmax weights/biases on top of RNN outputs 
W_sm = model.add_parameters((nwords, 128)) 
b_sm = model.add_parameters(nwords) 



RNNLM Example: 
Sentence Initialization

# Build the language model graph 
def calc_lm_loss(wids): 
    dy.renew_cg() 

    # parameters -> expressions 
    W_exp = dy.parameter(W_sm) 
    b_exp = dy.parameter(b_sm) 

    # add parameters to CG and get state 
    f_init = RNN.initial_state() 

    # get the word vectors for each word ID 
    wembs = [WORDS_LOOKUP[wid] for wid in wids] 

    # Start the rnn by inputting "<s>" 
    s = f_init.add_input(wembs[-1]) 

…



RNNLM Example: 
Loss Calculation and State Update

    # process each word ID and embedding 
    losses = [] 
    for wid, we in zip(wids, wembs): 

        # calculate and save the softmax loss 
        score = W_exp * s.output() + b_exp 
        loss = dy.pickneglogsoftmax(score, wid) 
        losses.append(loss) 

        # update the RNN state with the input 
        s = s.add_input(we)  
     
    # return the sum of all losses 
    return dy.esum(losses)

…



Code Examples 
sentiment-rnn.py



RNN Problems and 
Alternatives
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• Why? “Squashed” by non-linearities or small 
weights in matrices.
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A Solution: 
Long Short-term Memory 

(Hochreiter and Schmidhuber 1997)

• Basic idea: make additive connections between 
time steps

• Addition does not modify the gradient, no vanishing

• Gates to control the information flow



LSTM Structure
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Other Alternatives

• Lots of variants of LSTMs (Hochreiter and 
Schmidhuber, 1997)

• Gated recurrent units (GRUs; Cho et al., 2014)

• All follow the basic paradigm of “take input, update 
state”



Code Examples 
sentiment-lstm.py 

lm-lstm.py



Efficiency/Memory Tricks
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Handling Mini-batching

• Mini-batching makes things much faster!

• But mini-batching in RNNs is harder than in feed-
forward networks

• Each word depends on the previous word

• Sequences are of various length
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Mini-batching Method
this     is   an          example  </s>
this     is   another  </s> </s>

Padding
Loss 
Calculation

Mask

1 
1� 1 

1� 1 
1� 1 

1� 1 
0�

Take Sum

(Or use DyNet automatic mini-batching, 
much easier but a bit slower)
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Bucketing/Sorting

• If we use sentences of different lengths, too much 
padding and sorting can result in decreased 
performance

• To remedy this: sort sentences so similarly-
lengthed sentences are in the same batch



Code Example 
lm-minibatch.py
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Handling Long Sequences

• Sometimes we would like to capture long-term 
dependencies over long sequences

• e.g. words in full documents

• However, this may not fit on (GPU) memory
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Truncated BPTT
• Backprop over shorter segments, initialize w/ the 

state from the previous segment
I hate this movie

RNN RNN RNN RNN

It is so bad

RNN RNN RNN RNN

state only, no backprop

1st Pass

2nd Pass
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RNN Strengths/Weaknesses

• RNNs, particularly deep RNNs/LSTMs, are quite 
powerful and flexible

• But they require a lot of data

• Also have trouble with weak error signals passed 
back from the end of the sentence
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Pre-training/Transfer

• Train for one task, solve another

• Pre-training task: Big data, easy to learn

• Main task: Small data, harder to learn
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Example: 
LM -> Sentence Classifier 

(Luong et al. 2015)

• Train a language model first: lots of data, easy-to-
learn objective

• Sentence classification: little data, hard-to-learn 
objective

• Results in much better classifications, competitive 
or better than CNN-based methods
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Why Pre-training?
• The model learns consistencies in the data (Karpathy et al. 2015)  
 
 
 
 
 
 
_ 
 
 
 
 
 
 
 
 
 

• Model learns syntax (Shi et al. 2017) or semantics (Radford et al. 2017)



Questions?


