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An Example Prediction Propblem:
Sentence Classification
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A First Try:
Bag of Words (BOW)
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Continuous Bag of Words
(CBOW)
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What do Our Vectors
Represent?

 We can learn feature combinations (a node in the

second layer might be “feature 1 AND feature 5 are
active”)

* e.g. capture things such as "not” AND “hate”

e BUT! Cannot handle “not hate”



Handling Combinations



Bag of n-grams
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Why Bag of n-grams’
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What Problems
w/ Bag of n-grams®?

* Same as before: parameter explosion

* No sharing between similar words/n-grams



Time Delay/
Convolutional Neural Networks



Time Delay Neural Networks
(Waibel et al. 1989)
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Convolutional Networks
(LeCun et al. 1997)
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Parameter extraction performs a 2D sweep, not 1D



CNNs for Text

(Collobert and Weston 2011)

* 1D convolution = Time Delay Neural Network

« But often uses terminology/tunctions borrowed from
iImage processing

* [wo main paradigms:

* Context window modeling: For tagging, etc. get
the surrounding context before tagging

* Sentence modeling: Do convolution to extract n-
grams, pooling to combine over whole sentence



CNNs for Tagging

(Collobert and Weston 2011)
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CNNSs for Sentence Modeling

(Collobert and Weston 2011)
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Standard conv2d Function

e 2D convolution function takes input + parameters

* Input: 3D tensor

* rows (e.g. words), columns, features (“channels”)

e Parameters/Filters: 4D tensor

* rows, columns, input features, output features



Padding/striding

 Padding: After convolution, the rows and columns of the output
tensor are either

e = to rows/columns of input tensor (“same” convolution)

e =to rows/columns of input tensor minus the size of the filter plus
one (“valid” or “narrow”)

e =10 rows/columns of mDut tensor D|US filter minus one (“wide”)

o M, AP e

e Striding: It s also common to skip rows or columns (e.g. a stride of
[2,2] means use every other)

Image: Kalchbrenner et al. 2014



P00lINg

Pooling is like convolution, but calculates some reduction
function feature-wise

Max pooling: "Did you see this feature anywhere in the
range?” (most common)

-+ Average pooling: “How prevalent is this feature over the
entire range”

k-Max pooling: “Did you see this feature up to k times?”

Dynamic pooling: "Did you see this feature in the
beginning”? In the middle”? In the end”?”



L et's Try It!

cnn—-class.py



Stacked Convolution



Stacked Convolution

* Feeding in convolution from previous layer results
in larger area of focus for each feature
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Dilated Convolution
(e.g. Kalchbrenner et al. 2016)

 Gradually increase stride: low-level to high-level
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An Aside:
Nonlinear Functions

* Proper choice of a non-linear function is essential In
stacked networks

step tanh
rectifier / SOft
(RelU) B plus

* Functions such as RelU or softplus often work

better at preserving gradients mage: Wikinedia



Why (Dilated) Convolution
for Modeling Sentences?

In contrast to recurrent neural networks (next class)

+ Fewer steps from each word to the final
representation: RNN O(N), Dilated CNN O(log N)

+ Easier to parallelize on GPU

- Slightly less natural for arbitrary-length
dependencies

- A bit slower on CPU?



Structured Convolution



Why Structured
Convolution?

* Language has structure, would like it to localize
features

* €.Qg. noun-verb pairs very informative, but not
captured by normal CNNs



Example: Dependency
Structure

Sequa makes and repairs jet engines

SBJ COORD  CONJ NW

ROOT OBJ

Example From: Marcheggiani and Titov 2017



Tree-structured Convolution
(Ma et al. 2015)

* Convolve over parents, grandparents, siblings
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Graph Convolution
(e.g. Marcheggiani et al. 2017)

e Convolution is shaped by graph structure

* For example, dependency
tree Is a graph with

e Self-loop connections
 Dependency connections
 Reverse connections
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Convolutional Models of
Sentence Pairs



Why Model Sentence Pairs”?

* Paraphrase identification / sentence similarity
* Jextual entallment
* Retrieval

* (More about these specific applications in two
classes)



Siamese Network
(Bromley et al. 1993)

* Use the same network,
compare the extracted
representations

* (e.g. Time-delay
networks for signature
recognition)
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sentence S,

Convolutional Matching

Model (Hu et al. 2014)

e Concatenate sentences into a 3D tensor and perform convolution
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* Shown more effective than simple Siamese network



+ Matrix-based POOIing (Yin and Schutze 2015)
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Understanding CNN Results



Why Understanding®

¢ Sometimes we want to know why model is making
oredictions (e.qg. is there bias?)

* Understanding extracted features might lead to
new architectural ideas

* Visualization of filters, etc. easy in vision but harder
iIn NLP; other techniques can be used



Maximum Activation

« (Calculate the hidden feature values for whole data, find
section of image/sentence that results in max value

Example: Karpathy 2016



PCA/t-SNE Embedding
of Feature Vector

e Do dimension reduction on feature vectors
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Example: Sutskever+ 201



Occlusion

* Blank out one part at a time (in NLP, word”), and measure
the difference from the final representation/prediction

True Label: Afghan Hound
W

Example: Karpathy 2016



L et's Try It!
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Questions?



