CS11-747 Neural Networks for NLP

Convolutional Networks for Text

Graham Neubig

Carnegie Mellon University
Language Technologies Institute

Site
https://phontron.com/class/nn4nlp2017/
An Example Prediction Problem: Sentence Classification

I hate this movie

I love this movie
A First Try: Bag of Words (BOW)
Build It, Break It

I don’t love this movie

There’s nothing I don’t love about this movie

very good
good
neutral
bad
very bad

very good
good
neutral
bad
very bad
Continuous Bag of Words (CBOW)

I hate this movie

bias = scores
Deep CBOW

I hate this movie

+ bias = scores

\[+ \]

\[+ \]

\[= \]

\[+ \]

\[tanh(W_1 \cdot h + b_1) \]

\[tanh(W_2 \cdot h + b_2) \]

W + bias = scores
What do Our Vectors Represent?

• We can learn feature combinations (a node in the second layer might be “feature 1 AND feature 5 are active”)

• e.g. capture things such as “not” AND “hate”

• BUT! Cannot handle “not hate”
Handling Combinations
Bag of n-grams

\[
\text{sum}() = \text{bias} \cdot \text{scores}
\]
Why Bag of n-grams?

- Allow us to capture combination features in a simple way “don’t love”, “not the best”
- Works pretty well
What Problems w/ Bag of n-grams?

• Same as before: parameter explosion

• No sharing between similar words/n-grams
Time Delay/Convolutional Neural Networks
Time Delay Neural Networks
(Waibel et al. 1989)

I hate this movie

These are soft 2-grams!
Convolutional Networks
(LeCun et al. 1997)

Parameter extraction performs a 2D sweep, not 1D
CNNs for Text
(Collobort and Weston 2011)

• 1D convolution \approx Time Delay Neural Network

• But often uses terminology/functions borrowed from image processing

• Two main paradigms:

 • **Context window modeling:** For tagging, etc. get the surrounding context before tagging

 • **Sentence modeling:** Do convolution to extract n-grams, pooling to combine over whole sentence
CNNs for Tagging
(Collober and Weston 2011)
CNNs for Sentence Modeling
(Collobert and Weston 2011)
Standard conv2d Function

• 2D convolution function takes input + parameters

• Input: 3D tensor
 • rows (e.g. words), columns, features (“channels”)

• Parameters/Filters: 4D tensor
 • rows, columns, input features, output features
Padding/Striding

- **Padding**: After convolution, the rows and columns of the output tensor are either
 - $=$ to rows/columns of input tensor ("same" convolution)
 - $=$ to rows/columns of input tensor minus the size of the filter plus one ("valid" or "narrow")
 - $=$ to rows/columns of input tensor plus filter minus one ("wide")

- **Striding**: It is also common to skip rows or columns (e.g. a stride of $[2,2]$ means use every other)

Image: Kalchbrenner et al. 2014
Pooling

- Pooling is like convolution, but calculates some reduction function feature-wise

- **Max pooling**: “Did you see this feature anywhere in the range?” (most common)

- **Average pooling**: “How prevalent is this feature over the entire range”

- **k-Max pooling**: “Did you see this feature up to k times?”

- **Dynamic pooling**: “Did you see this feature in the beginning? In the middle? In the end?”
Let’s Try It!
cnn-class.py
Stacked Convolution
Stacked Convolution

- Feeding in convolution from previous layer results in larger area of focus for each feature.
Dilated Convolution
(e.g. Kalchbrenner et al. 2016)

- Gradually increase stride: low-level to high-level
An Aside: Nonlinear Functions

- Proper choice of a non-linear function is essential in stacked networks

Functions such as RelU or softplus often work better at preserving gradients

Why (Dilated) Convolution for Modeling Sentences?

• In contrast to recurrent neural networks (next class)

• + Fewer steps from each word to the final representation: RNN $O(N)$, Dilated CNN $O(\log N)$

• + Easier to parallelize on GPU

• - Slightly less natural for arbitrary-length dependencies

• - A bit slower on CPU?
Structured Convolution
Why Structured Convolution?

• Language has structure, would like it to localize features

• e.g. noun-verb pairs very informative, but not captured by normal CNNs
Example: Dependency Structure

Sequa makes and repairs jet engines

Example From: Marcheggiani and Titov 2017
Tree-structured Convolution
(Ma et al. 2015)

- Convolve over parents, grandparents, siblings

<table>
<thead>
<tr>
<th>n</th>
<th>ancestor paths</th>
<th>n</th>
<th>siblings</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>$m \rightarrow h \rightarrow g$</td>
<td>2</td>
<td>$s \rightarrow m \rightarrow -$</td>
</tr>
<tr>
<td>4</td>
<td>$m \rightarrow h \rightarrow g \rightarrow g^2$</td>
<td>3</td>
<td>$s \rightarrow m \rightarrow h \rightarrow t \rightarrow s \rightarrow m \rightarrow -$</td>
</tr>
<tr>
<td>5</td>
<td>$m \rightarrow h \rightarrow g \rightarrow g^2 \rightarrow g^3$</td>
<td>4</td>
<td>$t \rightarrow s \rightarrow m \rightarrow h \rightarrow s \rightarrow m \rightarrow h \rightarrow g$</td>
</tr>
</tbody>
</table>
Graph Convolution
(e.g. Marcheggiani et al. 2017)

- Convolution is shaped by graph structure
- For example, dependency tree is a graph with
 - Self-loop connections
 - Dependency connections
 - Reverse connections
Convolutional Models of Sentence Pairs
Why Model Sentence Pairs?

- Paraphrase identification / sentence similarity
- Textual entailment
- Retrieval
- (More about these specific applications in two classes)
Siamese Network
(Bromley et al. 1993)

• Use the same network, compare the extracted representations

• (e.g. Time-delay networks for signature recognition)
Convolutional Matching Model (Hu et al. 2014)

- Concatenate sentences into a 3D tensor and perform convolution

- Shown more effective than simple Siamese network
Convolutional Features + Matrix-based Pooling (Yin and Schutze 2015)
Understanding CNN Results
Why Understanding?

- Sometimes we want to know why model is making predictions (e.g. is there bias?)
- Understanding extracted features might lead to new architectural ideas
- Visualization of filters, etc. easy in vision but harder in NLP; other techniques can be used
Maximum Activation

• Calculate the hidden feature values for whole data, find section of image/sentence that results in max value

Example: Karpathy 2016
PCA/t-SNE Embedding of Feature Vector

- Do dimension reduction on feature vectors

Example: Sutskever+ 2014
Occlusion

• Blank out one part at a time (in NLP, word?), and measure the difference from the final representation/prediction.

Example: Karpathy 2016
Let's Try It!
cnn-activation.py
Questions?